Pulsed Laser Evaporation of Tl-Ba-Ca-Cu-O Films

  • S. H. Liou
  • N. J. Ianno
  • B. Johs
  • D. Thompson
  • D. Meyer
  • John A. Woollam


Pulsed Laser Evaporation (PLE) has been shown to produce superconducting films of excellent quality. We will be discussing the results obtained from the PLE of Tl-Ba-Ca-Cu-O using a frequency doubled Nd:YAG laser operating at 532 mn. Films were deposited on SrTiO3, MgO, yttrium stabilized ZrO2, and polycrystalline Al2O3. Nearly single phase films of Tl2Ba2Ca2Cu3O10 on MgO were routinely obtained. The best films exhibited a superconducting transition onset temperature of about 125K and zero resistance at 110K. The films had a c-axis orientation perpendicular to the substrates. X-ray microprobe fluorescence measurements indicate that a typical composition of the films is Tl0.66Ba1.77Ca1.46Cu3Ox, which is low in Ti compared to that expected for the 2:2:2:3 phase. The typical grain size is greater than 10 μm as revealed by scanning electron microscopy.


Critical Current Density Pulse Laser Evaporation Transport Critical Current Density Stainless Steel Block Heated Stainless Steel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    G. Gorodetsky, T.G. Kazyaka, R.L. Melcher, and R. Srinivasan, Appl. Phys. Lett. 46, 828 (1985).ADSCrossRefGoogle Scholar
  2. [2]
    R. Srinivasan, in Laser Processing and Diagnostics, edited by D. Baurle, Springer Series in Chemical Physics Vol. 39, (Springer-Berlin, 1984 ) p. 343.Google Scholar
  3. [3]
    J.T. Cheung, Appl. Phys. Lett. 51, 1940 (1987).ADSCrossRefGoogle Scholar
  4. [4]
    J.T. Cheung, G. Niizawa, J. Moyle, N.P. Ong, B.M. Paine, and T. Vreeland, J. Vac. Sci. Technol. A4, 2086 (1986).ADSCrossRefGoogle Scholar
  5. [5]
    M.I. Baleva, M.H. Maksimov, S.M. Metev, and M.S. Sendova, J. Mat. Sci. Lett. 5, 533 (1986).CrossRefGoogle Scholar
  6. [6]
    J.J. Dubowski, P. Norman, P.B. Sewell, D.F. Williams, F. Krolicki, and M. Lewicki, Thin Solid Films 147, L51 (1987).CrossRefGoogle Scholar
  7. [7]
    H.S. Kwok, P. Mattocks, D.T. Shaw, L. Shi, X.W. Wang, S. Witanachchi, Q.Y. Ying J.P. Zheng and P. Bush, Mat. Res. Soc. Symp. Proc. Vol 199. 273 (1988).Google Scholar
  8. [8]
    D. Dijkkamp, T. Venkatesan, X.D. Wu, S.A. Shaheen, N. Jisrawi, Y.H. Min-Lee, W.L. McLean, and M. Croft, Appl. Phys. Lett. 51, 619 (1987).ADSCrossRefGoogle Scholar
  9. [9]
    S. Witanachchi, H.S. Kwok, X.W. Wang and D.T. Shaw, Appl. Phys. Lett. 53, 234 (1988).ADSCrossRefGoogle Scholar
  10. [10]
    A. Inam, M.S. Hegde, X.D. Wu, T. Venkatesan, P. England, P.F. Miceli, E.W. Chase, C.C. Chang, J.M. Tarascon and J.B. Wachturan, Appl. Phys. Lett. 53, 908 (1988).ADSCrossRefGoogle Scholar
  11. [11]
    D.K. Fork, J.B. Boyce, F.A. Ponce, R.I. Johnson, G.B. Anderson, G.A.N. Connell, C.B. Emil and T.H. Geballe, Appl. Phys. Lett. 53, 337 (1988).ADSCrossRefGoogle Scholar
  12. [12]
    C.R. Guarnieri, R.A. Roy, K.L. Saenger, S.A. Shivashankar, D.S. Yee, and J.J. Cuomo, Appl. Phys. Lett. 53, 532 (1988).ADSCrossRefGoogle Scholar
  13. [13]
    R.A. Neifeld, S. Gunapala, C. Liang, S.A. Shaheen, M. Croft, J. Price, D. Simons and W.T. Hill III, Appl. Phys. Lett. 53, 703 (1988).ADSCrossRefGoogle Scholar
  14. [14]
    L. Lynds, B.R. Weinberger, G.G. Peterson, and H.A. Krasinski, Appl. Phys. Lett. 52, 320 (1988).ADSCrossRefGoogle Scholar
  15. [15]
    S. Mazuk and M.S. Leung, Spring Meeting Materials Research Society, Abstract K3.10, April, 1988.Google Scholar
  16. [16]
    S. Miura, T. Yoshitake, T. Satoh, Y. Miyasaka, and N. Shohata, Appl. Phys. Lett. 52, 1008 (1988).ADSCrossRefGoogle Scholar
  17. [17]
    S.S.P. Parkin, V.Y. Lee, E.M. Engler, A.I. Nazzal, T.C. Huang, G. Gorman, R. Savoy, and R. Beyers, Phys. Rev. Lett. 60, 2539 (1988).ADSCrossRefGoogle Scholar
  18. [18]
    D.S. Ginley, J.F. Kwak, R.P. Hellmer, R.J. Baughman, E.L. Venturini, and B. Morosin, Appl. Phys. Lett. 53, 406 (1988).ADSCrossRefGoogle Scholar
  19. [19]
    W.Y. Lee, V.Y. Lee, J. Salem, T.C. Huang, R. Savoy, D.C. Bullock, and S.S.P. Parkin, Appl. Phys. Lett. 53, 329 (1988).ADSCrossRefGoogle Scholar
  20. [20]
    M. Nakao, R. Yuasa, M. Nemoto, H. Kuwahara, H. Mukaida, and A. Mizukami, Jpn. J. Appl. Phys. 27, L849 (1988).ADSCrossRefGoogle Scholar
  21. [21]
    Yo. Ichikawa, H. Adachi, K. Setsune, S. Hatta, K. Hirochi, and K. Wasa, Appl. Phys. Lett. 53, 919 (1988).ADSCrossRefGoogle Scholar
  22. [22]
    M. Hong, S.H. Liou, D.D. Bacon, G.S. Grader, J. Kwo, A.R. Kortan, and B.A. Davidson, Appl. Phys. Lett. 53, 2102 (1988).ADSCrossRefGoogle Scholar
  23. [23]
    J.H. Kang, R.T. Kampwirth, and K.E. Gray, Phys. Lett. A131, 208 (1988).CrossRefGoogle Scholar
  24. [24]
    D.H. Chen, R.L. Sabatini, S.L. Qiu, D. DiMarzio, S.M. Heald, and H. Wies-mann, (unpublished).Google Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • S. H. Liou
    • 1
  • N. J. Ianno
    • 2
  • B. Johs
    • 2
  • D. Thompson
    • 2
  • D. Meyer
    • 2
  • John A. Woollam
    • 2
  1. 1.Department of Physics and AstronomyUniversity of Nebraska-LincolnLincolnUSA
  2. 2.Department of Electrical EngineeringUniversity of Nebraska — LincolnLincolnUSA

Personalised recommendations