Metalorganic Chemical Vapor Deposition of Highly Textured Superconducting YBa2Cu3O7-x Films

  • K. Zhang
  • B. S. Kwak
  • E. P. Boyd
  • A. C. Wright
  • A. Erbil


C-axis textured single phase superconducting YBa2Cu3O7-x films have been successfully grown on the yttria-stabilized zirconia (100) substrates by using the metalorganic chemical vapor deposition technique. After the post annealing the films deposited on the yttria-stabilized zirconia substrates exhibited a highly textured x-ray pattern with c-axis perpendicular to the substrate surface. These films show an onset superconducting transition temperature of 93K with the resistance becoming zero at 84K. The films deposited on sapphire show a semiconducting feature in the normal state with a broad superconducting transition at much lower temperatures (10–40K). In order to gain some insight onto the growth process, we also studied the mass transport of metalorganic compounds as a function of source temperature, flow rate and reactor pressure.


Yttria Stabilize Zirconia Metalorganic Chemical Vapor Deposition Post Annealing Mass Transport Rate Fuse Quartz Substrate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    J. G. Bednorz and K. A. Muller, Z. Phys. B 64, 189 (1986).ADSCrossRefGoogle Scholar
  2. (2).
    M. K. Wu, L. R. Ashburn, C. J. Torng, P. H. Hor, R. L. Meng, L. Gao, Z. J. Huang, Y. Q. Wang and C. W. Chu, Phys. Rev. Lett. 58, 908 (1987).ADSCrossRefGoogle Scholar
  3. (3).
    P. Chaudhari, R. H. Koch, R. B. Laibowitz, T. G. Mcguire, and R. J. Gambino, Phys. Rev. Lett. 58, 2684 (1987).ADSCrossRefGoogle Scholar
  4. (4).
    M. Naito, R. H. Hammond, B. Oh, M. Hahn, J. W. P. Hsu, P. Rosenthal, A. Marshall, M. R. Beasley, A. Kapitulnik, and T. H. Geballe, J. Mater. Res. 2, 713 (1987).ADSCrossRefGoogle Scholar
  5. (5).
    R. M. Silver, A. B. Berezin, M. Wendman, and A. L. de Lozanne, Appl. Phys. Lett. 52, 2174 (1988).ADSCrossRefGoogle Scholar
  6. (6).
    P. Berberich, J. Tate, W. Dietsche, and H. Kinder, Appl. Phys. Lett. 53, 925 (1988).ADSCrossRefGoogle Scholar
  7. (7).
    A. Inam, M. S. Hegde, X. D. Wu, T. Venkatesan, P. England, P. F. Miceli, E. W. Chase, C. C. Chang, J. M. Tarascon, and J. B. Wachtman, Appl. Phys. Lett. 53, 908 (1988).ADSCrossRefGoogle Scholar
  8. (8).
    Y. Enomato, T. Murakami, M. Suzuki, and K. Moriwaki, Jpn. J. Appl. Phys. 26, L1248 (1987).ADSCrossRefGoogle Scholar
  9. (9).
    K. Char, A. D. Kent, A. Kapitulnik, M. R. Beasley, and T. H. Geballe, Appl. Phys. Lett. 51, 1370 (1987).ADSCrossRefGoogle Scholar
  10. (10).
    J. Kwo, T. C. Hsich, R. H. Fleming, M. Hong, S. H. Liou, B. A. Davidson, and L. C. Feldman, Phys. Rev. B 36, 4089 (1987).ADSCrossRefGoogle Scholar
  11. (11).
    S. Shibata, T. Kitagawa, H. Okazaki, and T. Kimura, Jpn. J. Appl. Phys. 27, L646 (1988).ADSCrossRefGoogle Scholar
  12. (12).
    Z. L. Bao, F. H. Wang, Q. P. Kiang, S. Z. Wang, Z. Y. Ye, K. Wu, C. Y. Li, and D. L. Yin, Appl. Phys. Lett. 51, 946 (1987).ADSCrossRefGoogle Scholar
  13. (13).
    P. D. Dapkus, Ann. Rev. Mater. Sci. 12, 243 (1982).CrossRefGoogle Scholar
  14. (14).
    R. E. Sievers and J. E. Sadlowski, Science 201 217 (1972).Google Scholar
  15. (15).
    M. J. Cima, J. S. Schneider, S. C. Peterson, and W. Coblenz, Appl. Phys. Lett. 53, 710 (1988).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • K. Zhang
    • 1
  • B. S. Kwak
    • 1
  • E. P. Boyd
    • 1
  • A. C. Wright
    • 1
  • A. Erbil
    • 1
  1. 1.School of PhysicsGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations