Superconducting Properties of Magnetron Sputtered Bi-Sr-Ca-Cu-O and Tl-Ba-Ca-Cu-O Thin Films

  • R. T. Kampwirth
  • J. H. Kang
  • K. E. Gray


Thin films of high temperature superconducting Bi-Sr-Ca-Cu-O and Tl-Ba-Ca-Cu-O have been made using multiple source magnetron sputtering. We will discuss preparation and annealing and how they affect the superconducting properties. The Bi-based films form in at least two compounds, a lower Tc phase with a 2212 composition and Tc0 ≈ 80 K and a higher Tc phase with a nominal composition of 2223 and a Tc ≈ 105 K. The higher Tc phase is very difficult to form so that a complete superconducting path exists, requiring long annealing times at temperatures somewhat below the formation temperature. Although superconducting properties are less sensitive to stoichiometry than YBa2Cu3O7-x, annealing temperatures must be held in a narrow range around 865°C to get the best results. Films prefer growing on (100) MgO in a highly textured polycrystalline form, with the c-axis perpendicular to the plane of the film. The Tl-based films form at least three compounds (2212, 1223, 2223) with Tc’s ranging from ≈ 100 K to 114 K and grow best on (100) and polycrystalline Y-ZrO2 substrates. Annealing conditions are particularily difficult because of the volatility of thallium and require samples to be annealed in sealed capsules with a controlled atmosphere of thallium and oxygen. Upper critical field measurements show a large anisotropy (≈15 for Bi-Sr-Ca-Cu-O and ≥70 for T1-Ba-Ca-Cu-O) in the parallel to perpendicular field slope ratio as might be expected from a highly textured anisotropic structure.


Critical Field Superconducting Property YBCO Film Resistive Transition Thin Film Geometry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Chaudhari, R.H. Koch, R.B. Laibowitz, T.R. McGuire, and R.J. Gambino, Phys. Rev. Lett. 58:2684(1987).ADSCrossRefGoogle Scholar
  2. 2.
    P. Madakson, J.J. Cuomo, D.S. Yee, R.A. Roy and G. Scilla, J. Appl. Phys. 63:2046 (1988).ADSCrossRefGoogle Scholar
  3. 3.
    M. Hong, S.H. Liou, J. Kwo, and B.A. Davidson, Appl. Phys. Lett. 51: 694 (1987).ADSCrossRefGoogle Scholar
  4. 4.
    X.D. Wu, D. Dijkkamp, S.B. Ogale, A. Inam, E.W. Chase, P.F. Michi, C.C. Chang, J.M. Tarason, and T. Venkatesan, Appl. Phys. Ett. 51:861 (1987).ADSGoogle Scholar
  5. 5.
    J.H. Kang, R.T. Kampwirth and K.E. Gray, Appl. Phys. Lett 52:2080 (1988).ADSCrossRefGoogle Scholar
  6. 6.
    Y. Ichikawa, H. Adachi, K. Hirochi, K. Setsune, S. Hatta and K. Wasa, Phys. Rev.B 38: 765 (1988).ADSCrossRefGoogle Scholar
  7. 7.
    C.E. Rice, A.F.J. Levi, R.M. Fleming, P. Marsh, K.W. Baldwin, M. Anzlower, A.E. White, K.T. Short, S. Nakahara and H.L. Stormer, Appl. Phys. Lett. 52:1828 (1988).Google Scholar
  8. 8.
    R.M. Hazen, L.W. Finger, R.J. Angel, C.T. Prewitt, N.L. Ross, C.G. Hadidiacos, P.J. Heaney, D.R. Veblen, Z.Z. Sheng, A. El Ali and A.M. Herman, Phys. Rev. Lett 60:1657 (1988).ADSCrossRefGoogle Scholar
  9. 9.
    J.H. Kang, R.T. Kampwirth, K.E. Gray, Phys. Lett.A 131:208 (1988).ADSCrossRefGoogle Scholar
  10. 10.
    D.S. Ginley, J.F. Kwak, R.P. Hellmer, R.J. Baughman, E.L. Venturini and B. Morosin, Appl. Phys. Lett 53:406 (1988).ADSCrossRefGoogle Scholar
  11. 11.
    W.Y. Lee, W.Y. Lee, J. Salem, T.C. Huang, R. Savoy, D.C. Bullock, and S.S.P. Parkin, Appl. Phys. Lett. 53:329 (1988).ADSCrossRefGoogle Scholar
  12. 12.
    S.H. Liou, M. Hong, B.A. Davidson, R.C. Farrow, J. Kwo, T.C. Hsieh, R.M. Fleming, H.S. Chen, L.C. Feldman, A.R. Kortan and R.J. Felder, in Proc. of Amer. Vac. Soc. Topical Conf. on “Thin Film Processing and Characterization of High Temperature Superconductors”, Amer. Institute of Phys., New York, (1988).Google Scholar
  13. 13.
    Y. Yeshurun and A.P. Malozemoff, Phys. Rev. Lett. 60:2202 (1988).ADSCrossRefGoogle Scholar
  14. 14.
    A. Umezawa, G.W. Crabtree, J.Z. Liu, in Proc. Intl. Conf. on High-Temperature Superconductors and Materials and Mechanisms of Superconductivity; and A. Umezawa, G.W. Crabtree, J.Z. Liu, T.J. Moran, S.K. Malik, L.H. Nunez, W.L. Kwok and C.H. Sowers, private communication.Google Scholar
  15. 15.
    P. Chaudhari, R.T. Collins, P. Freitas, R.J. Gambino, J.R. Kirtley, R.H. Koch, R.B. Laibowitz, F.K. LeGoues, T.R. McGuire, T. Penney, Z. Schlesinger, A.P. Segmueller, S. Foner and E.J. McNiff, Jr., Phys. Rev.B 36: 8903 (1987).ADSCrossRefGoogle Scholar
  16. 16.
    J.S. Moodera, R. Meservey, J.E. Tkaczyk, C.X. Hao, G.A. Gilbson and P.M. Tedrow, Phys, Rev. B 37:619 (1988).ADSCrossRefGoogle Scholar
  17. 17.
    T.T.M. Palstra, B.Batlogg, L.F. Schneemeyer, R.B. van Dover and J.V. Waszczak, Phys. Rev. B38:5102 (1988). ADSGoogle Scholar
  18. 18.
    M. Tinkham, Phys. Rev. Lett. 61:1758 (1988).ADSCrossRefGoogle Scholar
  19. 19.
    M. Tinkham, “Introduction to Superconductivity,” McGraw-Hill, New York (1975).Google Scholar
  20. 20.
    J.M. Murduck, D.W. Capone II, I.K. Schuller, S. Foner and J.B. Ketterson, Appl. Phys. Lett. 52:504 (1988).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • R. T. Kampwirth
    • 1
  • J. H. Kang
    • 1
  • K. E. Gray
    • 1
  1. 1.Argonne National LaboratoryArgonneUSA

Personalised recommendations