Advertisement

Properties of in-Situ Superconducting Y1Ba2Cu3O7-x Films by Molecular Beam Epitaxy with an Activated Oxygen Source

  • J. Kwo
  • M. Hong
  • D. J. Trevor
  • R. M. Fleming
  • A. E. White
  • R. C. Farrow
  • A. R. Kortan
  • K. T. Short

Abstract

Highly oriented, epitaxial Y1Ba2Cu3O7-x thin films were prepared on MgO(100) by molecular beam epitaxy at a substrate temperature of 550–600°C. The in-situ growth was achieved by incorporating reactive oxygen species produced by a remote microwave plasma in a flow-tube reactor. The epitaxial (001) orientation is demonstrated by X-ray diffraction, and ion channeling. In-situ reflection high energy electron diffraction showed that a layer by layer growth has produced a well ordered, atomically smooth surface in the as-grown tetragonal phase of an oxygen stoichiometry of 6.2–6.3. A 500°C anneal in 1 atm of O2 converted the oxygen content to 6.7 to 6.8. Typical superconducting transport properties of a Y1Ba2Cu3O7-x film 1000Å thick are ρ(300K)= 325 μΩ-cm, ρ(300K)/ρ(100K)= 2.4, Tc(onset) = 92K, and Tc(R=0) = 82K. The transport Jc at 75K is 1×105 A/cm2, and increases to 1×106 A/cm2 at 70K.

Keywords

Reflection High Energy Electron Diffraction Oxygen Stoichiometry Volume Recombination High Temperature Annealing Process Effective Area Coverage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    For a complete review, see D. W. Murphy, D. W. Johnson, Jr., S. Jin, and R. E. Howard, Science, 241, 922, (1988), and references therein.ADSCrossRefGoogle Scholar
  2. 2.
    X. D. Wu, A. Inam, T. Venkatesan, C. C. Chang, E. W. Chase, P. Barboux, J. M. Tarascon, and B. Wilkins, Appl. Phys. Lett. 52, 754 (1988).ADSCrossRefGoogle Scholar
  3. 3.
    S. Witanachchi, H. S. Kwok, X. W. Wang, and D. T. Shaw, Appl. Phys. Lett. 53, 234 (1988).ADSCrossRefGoogle Scholar
  4. 4.
    H. Adachi, K. Hirochi, K. Setsune, M. Kitabatake, and K. Wasa, Appl. Phys. Lett. 51, 2263 (1987).ADSCrossRefGoogle Scholar
  5. 5.
    D. K. Lathrop, S. E. Russek, and R. A. Burhman, Appl. Phys. Lett. 51, 1554 (1987).ADSCrossRefGoogle Scholar
  6. 6.
    T. Terashima, K. lijima, K. Yamamoto, Y. Bando, and H. Mazaki, Japan J. Appl. Phys. 27, L91 (1988).ADSCrossRefGoogle Scholar
  7. 7.
    R. M. Silver, A. B. Berezin, M. Wendman, and A. L. de Lozanne, Appl. Phys. Lett. 52, 2174 (1988).ADSCrossRefGoogle Scholar
  8. 8.
    R. J. Spah, H. F. Hess, H. L. Stormer, A. E. White, and K. T. Short, Appl. Phys. Lett. 53, 441 (1988).ADSCrossRefGoogle Scholar
  9. 9.
    Similar advantages of using a microwave plasma oxygen source were reported by N. Missert, R. H. Hammond, J. E. Mooij, V. Matijasevic, P Rosenthal, T. H. Geballe, A. Kapitulnik, M. R. Beasley, S. S. Laderman, C. Lu, E. Garwin, and R. Barton, Applied Superconductivity conference, San Franscisco, CA, Aug. 1988, (preprint).Google Scholar
  10. 10.
    J. Kwo, T. C. Hsieh, R. M. Fleming, M. Hong, S. H. Liou, B. A. Davidson, and L. C. Feldman, Phys. Rev. B 36, 4039 (1987).ADSCrossRefGoogle Scholar
  11. 11.
    F. Kaufman, Prog. React. Kinet. 1, 1 (1961).MathSciNetGoogle Scholar
  12. 12.
    T. J. Cook, and T. A. Miller, Chem. Phy. Lett. 25, 396 (1974).ADSGoogle Scholar
  13. 13.
    P. K. Gallagher, Advances in Ceramic Materials, 2, 632 (1987).Google Scholar
  14. 14.
    P. M. Mankiewich, W. J. Skocpol, R. E. Howard, A. Dayem, G. J. Fisanick, C. E. Rice, A. E. White, K. T. Short, D. C. Jacobson, J. M. Poate, R. C. Dynes, R. B. Vandover, Proc. Mat. Res. Soc. Symp., 99, 703 (1988).Google Scholar
  15. 15.
    O. Meyer, F. Weschenfelder, J. Geerk, H. C. Li, and G. C. Xiong, Phys. Rev. B 37, 9757, (1988).ADSCrossRefGoogle Scholar
  16. 16.
    N. G. Stoffel, D. A. Morris, W. A. Bonner, and B. J. Wilkens, Phys. Rev. B 37, 2297, (1988).ADSCrossRefGoogle Scholar
  17. 17.
    R. J. Cava, B. Batlogg, C. H. Chen, E. A. Rietman, S. M. Zahurak and D. W. Murphy, Nature 329, 423 (1987) and Phys. Rev. B 36, 5719 (1987).CrossRefGoogle Scholar
  18. 18.
    H. M. O’Bryan and P. K. Gallagher, Advances in Ceramic Materials 2, 642 (1987).Google Scholar
  19. 19.
    Thin Film Research of High Te Superconductors“, M. Hong, J. Kwo, C. H. Chen, R. M. Fleming, S. H. Liou, M. E. Gross, B. A. Davidson, H. S. Chen, S. Nakahara and T. Boone, in Thin Film Processing and Characterization of High-Temperature Superconductors: Anaheim, CA, 1987,ed. by J. M. E. Harper, R. J. Colton, and L. C. Feldman, (AIP: New York: 1988), p 12.Google Scholar
  20. 20.
    T. Siegrist, S. Sunshine, D. W. Murphy, R. J. Cava and S. M. Zahurak, Phys. Rev. B 35, 7137 (1987).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • J. Kwo
    • 1
  • M. Hong
    • 1
  • D. J. Trevor
    • 1
  • R. M. Fleming
    • 1
  • A. E. White
    • 1
  • R. C. Farrow
    • 1
  • A. R. Kortan
    • 1
  • K. T. Short
    • 1
  1. 1.AT&T Bell LaboratoriesMurray HillUSA

Personalised recommendations