Advertisement

Dynamics of Molecular Photodissociation

  • Reinhard Schinke
Part of the NATO ASI Series book series (NSSB, volume 196)

Abstract

Photodissociation is the break-up of an initially bound (diatomic or polyatomic) molecule through the absorption of light. If the dissociation energy is small (≲ 100meV) as it is usually the case for van der Waals molecules, for example, an infra-red (IR) photon is sufficient to break the weak bond. The energy of the photon is first selectively deposit in an internal mode and then transfered to the van der Waals mode by intramolecular forces. The electronic structure of the parent molecule is not changed by IR-absorption and therefore the dissociation occurs entirely in the ground electronic state. The lifetime of the excited complex is typically longer than a ps and depends sensitively on the strength of the intramolecular forces. This type of (rotational/vibrational) predissociation has been amply studied in the past, both experimentally and theoretically.1 It is still an active field and many new results are expected in the future.

Keywords

Potential Energy Surface Final State Interaction Partial Cross Section Rotational Excitation Reflection Principle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K.C. Janda, in: “Photodissociation and photoionization,” K.P. Lawley, ed., Wiley, New York (1985).Google Scholar
  2. 2.
    H. Okabe, “Photochemistry of small molecules,” Wiley, New York (1978).Google Scholar
  3. 3.
    M.B. Robin, “Higher excited states,” Academic Press, New York (1974).Google Scholar
  4. 4.
    G. Herzberg, “Molecular spectra and molecular structure I. Spectra of diatomic molecules,” Van Nostrand, Princeton (1950);Google Scholar
  5. G. Herzberg. Herzberg, “Molecular spectra and molecular structure III. Electronic spectra of polyatomic molecules,” Van Nostrand, Princeton (1966).Google Scholar
  6. 5.
    S.R. Leone, Adv. Chem. Phys. 50: 255 (1982).Google Scholar
  7. 6.
    J.P. Simons, J. Phys. Chem. 88: 1287 (1984).CrossRefGoogle Scholar
  8. 7.
    R. Bersohn, J. Phys. Chem. 88: 5145 (1984).CrossRefGoogle Scholar
  9. 8.
    W.M. Jackson and H. Okabe, in: “Advances in photochemistry,” Vol. 13, D.H. Volman, K. Gollnick, and G.S. Hammond, eds., Wiley, New York (1986).Google Scholar
  10. 9.
    S. Buelow, M. Noble, G. Radharkrishnan, H. Reisler, C. Wittig, and G. Hancock, J. Phys. Chem. 90: 1015 (1986).CrossRefGoogle Scholar
  11. 10.
    U. Hefter and K. Bergmann, in: “Atomic and molecular beam methods,” G. Scoles, ed., Oxford University Press, Oxford (1986).Google Scholar
  12. 11.
    M.N.R. Ashfold, Mol. Phys. 58: 1 (1980);ADSCrossRefGoogle Scholar
  13. D.H. Parker, in “Ultrasensitive laser spectroscopy,” D.S. Klinger, ed., Academic Press, New York (1983).Google Scholar
  14. 12.
    R. Schinke and J.M. Bowman, in: “Molecular collision dynamics,” J.M. Bowman, ed., Springer, Heidelberg (1983).Google Scholar
  15. 13.
    R. Schinke, J. Chem. Phys. 85: 5049 (1986).ADSCrossRefGoogle Scholar
  16. 14.
    R. Schinke and V. Engel, Faraday Discuss. Chem. Soc. 82: paper 11 (1986).Google Scholar
  17. 15.
    E.J. Heller, J. Chem. Phys. 68: 2066 (1978).ADSCrossRefGoogle Scholar
  18. 16.
    E.J. Heller, J. Chem. Phys. 68: 3897 (1978).ADSCrossRefGoogle Scholar
  19. 17.
    K.C. Kulander and E.J. Heller, J. Chem. Phys. 69: 2439 (1978).ADSCrossRefGoogle Scholar
  20. 18.
    S.Y. Lee and E.J. Heller, J. Chem. Phys. 76: 3035 (1982).ADSCrossRefGoogle Scholar
  21. 19.
    M. Shapiro and R. Bersohn, Ann. Rev. Phys. Chem. 33: 409 (1982).ADSCrossRefGoogle Scholar
  22. 20.
    M. Weissbluth, “Atoms and molecules,” Academic Press, New York (1978).Google Scholar
  23. 21.
    G.G. Balint-Kurti and M. Shapiro, Chem. Phys. 61: 137 (1981); /2: 456 (1982).Google Scholar
  24. 22.
    M. Shapiro, J. Chem. Phys. 56: 2582 (1972).ADSCrossRefGoogle Scholar
  25. 23.
    M. Shapiro and G.G. Balint-Kurti, in: “Photodissociation and Photo-ionization,” K.P. Lawley, ed., Wiley, New York (1985).Google Scholar
  26. 24.
    K.C. Kulander and J.C. Light, J. Chem. Phys. 73: 4337 (1980).ADSCrossRefGoogle Scholar
  27. 25.
    F.A. Gianturco, “The transfer of molecular energy by collisions”, Springer, Heidelberg (1979).Google Scholar
  28. 26.
    D. Secrest, J. Chem. Phys. 62: 710 (1975).ADSCrossRefGoogle Scholar
  29. 27.
    G.A. Parker and R.T. Pack, J. Chem. Phys. 68: 1585 (1978).ADSCrossRefGoogle Scholar
  30. 28.
    P. McGuire, Chem. Phys. Lett. 23: 575 (1973); P. McGuire and D.J. Kouri, J. Chem. Phys. 60: 2488 (1974); R.T. Pack, J. Chem. Phys. 60: 633 (1974)CrossRefGoogle Scholar
  31. 29.
    R. Schinke, J. Phys. Chem. 90: 1742 (1986).CrossRefGoogle Scholar
  32. 30.
    S. Hennig, V. Engel, and R. Schinke, J. Chem. Phys. 84: 5444 (1986).ADSCrossRefGoogle Scholar
  33. 31.
    L.D. Thomas, M.H. Alexander, B.R. Johnson, W.A. Lester, Jr., J.C. Light, K.D. McLenithan, G.A. Parker, M.J. Redmond, T.G. Schmalz, D. Secrest, and R.B. Walker, J. Comput. Phys. 41: 407 (1981).ADSMATHCrossRefGoogle Scholar
  34. 32.
    R.N. Porter and L.M. Raff, in: “Modern theoretical chemistry,” W.H. Miller, ed., Plenum, New York (1976);Google Scholar
  35. G.C. Schatz, in: “Molecular collision dynamics,” J.M. Bowman, ed., Springer, Heidelberg (1983).Google Scholar
  36. 33.
    W.H. Miller, Adv. Chem. Phys. 25: 69 (1974)Google Scholar
  37. W.H. Miller, Adv. Chem. Phys. 30: 77 (1975).Google Scholar
  38. 34.
    A. Messiah, “Quantum mechanics,” North Holland, Amsterdam (1972)Google Scholar
  39. 35.
    E. Wigner, Phys. Rev. 40: 749 (1932).ADSMATHCrossRefGoogle Scholar
  40. 36.
    S. Goursaud, M. Sizun, and F. Fiquet-Fayard, J. Chem. Phys. 65: 5453 (1976).ADSCrossRefGoogle Scholar
  41. 37.
    M.D. Pattengill: Chem. Phys. 68: 73 (1982);ADSCrossRefGoogle Scholar
  42. M.D. Pattengill: Chem. Phys. 78: 229 (1983);ADSCrossRefGoogle Scholar
  43. M.D. Pattengill: Chem. Phys. Lett. 104: 462 (1984);ADSCrossRefGoogle Scholar
  44. M.D. Pattengill: Chem. Phys. Lett. 105: 651 (1984);ADSCrossRefGoogle Scholar
  45. M.D. Pattengill: Chem. Phys. 87: 419 (1984).ADSCrossRefGoogle Scholar
  46. 38.
    E.M. Goldfield, P.L. Houston, and G.S. Ezra, J. Chem. Phys. 84: 3120 (1986).ADSCrossRefGoogle Scholar
  47. 39.
    R. Bersohn and M. Shapiro, J. Chem. Phys. 85: 1396 (1986).ADSCrossRefGoogle Scholar
  48. 40.
    M.G. Sheppard and R.B. Walker, J. Chem. Phys. 78: 7191 (1983).ADSCrossRefGoogle Scholar
  49. 41.
    N.E. Henriksen, Chem. Phys. Lett. 121: 139 (1985).Google Scholar
  50. 42.
    K.F. Freed and Y.B. Band, in “Excited states,” Vol. 3, E.C. Lim, ed., Academic Press, New York (1978).Google Scholar
  51. 43.
    J.A. Beswick and W.M. Gelbart, J. Phys. Chem. 84: 3148 (1980).CrossRefGoogle Scholar
  52. 44.
    M.D. Morse, K.F. Freed, and Y.B. Band, J. Chem. Phys. 70: 3604 (1979);ADSCrossRefGoogle Scholar
  53. M.D. Morse and K.F. Freed: Chem. Phys. Lett. 74: 49 (1980):Google Scholar
  54. M.D. Morse and K.F. Freed: J. Chem. Phys. 74: 4395 (1981);ADSCrossRefGoogle Scholar
  55. M.D. Morse and K.F. Freed: J. Chem. Phys. 78: 6045 (1983).Google Scholar
  56. 45.
    P. Andresen and R. Schinke, in “Molecular photodissociation dynamics,”J.E. Baggott and M.N.R. Ashfold, eds., Roy. Soc. Chem. (1987).Google Scholar
  57. 46.
    P. Andresen, G.S. Ondrey, B. Titze, and E.W. Rothe, J. Chem. Phys. 80: 2548 (1984).ADSCrossRefGoogle Scholar
  58. 47.
    R. Schinke, V. Engel, P. Andresen, D. Häusler, and G.G. Balint-Kurti, Phys. Rev. Lett. 55: 1180 (1985).ADSCrossRefGoogle Scholar
  59. 47.
    R. Schinke, V. Engel, P. Andresen, D. Häusler, and G.G. Balint-Kurti, Phys. Rev. Lett. 55: 1180 (1985).ADSCrossRefGoogle Scholar
  60. 49.
    W.J. Marinelli, N. Sivakumar, and P.L. Houston, J. Phys. Chem. 88: 6658 (1984);CrossRefGoogle Scholar
  61. I. Nadler, D. Mahgerefteh, H. Reisler, and C. Wittig, J. Chem. Phys. 82: 3885 (1985);ADSCrossRefGoogle Scholar
  62. W.H. Fisher, R. Eng, T. Carrington, C.H. Dugan, S.V. Filseth and C.M. Sadowski, Chem. Phys. 89: 457 (1984).CrossRefGoogle Scholar
  63. 50.
    J.A. Russel, I.A. McLaren, W.A. Jackson, and J.B. Halpern, J. Phys. Chem., to be published.Google Scholar
  64. 51.
    O. Benoist d’Azy, F. Lahmani, C. Lardeux, and D. Solgadi, Chem. Phys. 94: 247 (1985).CrossRefGoogle Scholar
  65. 52.
    U. Brühlmann, M. Dubs, and J.R. Huber, J. Chem. Phys. 86: 1249 (1987).ADSCrossRefGoogle Scholar
  66. 53.
    J.B. Halpern and W.M. Jackson, J. Phys. Chem. 86: 3528 (1982).CrossRefGoogle Scholar
  67. 53.
    J.B. Halpern and W.M. Jackson, J. Phys. Chem. 86: 3528 (1982).CrossRefGoogle Scholar
  68. 55.
    E. Gottwald, K. Bergmann, and R. Schinke, J. Chem. Phys. 86: 2685 (1987).Google Scholar
  69. 56.
    W. Schepper, U. Ross, and D. Beck, Z. Phys. A 290: 131 (1979).ADSCrossRefGoogle Scholar
  70. 57.
    S. Bonanac, Phys. Rev. A 22: 2617 (1980).Google Scholar
  71. 58.
    J. Korsch and R. Schinke, J. Chem. Phys. 75: 3850 (1981).ADSCrossRefGoogle Scholar
  72. 59.
    R. Schinke and V. Engel, J. Chem. Phys. 83: 5068 (1985).ADSCrossRefGoogle Scholar
  73. 60.
    C.B. Moore and J.C. Weishaar, Ann. Rev. Phys. Chem. 34: 31 (1983).CrossRefGoogle Scholar
  74. 61.
    D.J. Bamford, S.V. Filseth, M.F. Foltz, J.W. Hepburn, and C.B. Moore, J. Chem. Phys. 82: 3032 (1985).ADSCrossRefGoogle Scholar
  75. 62.
    J.D. Goddard and H.F. Schaefer III, J. Chem. Phys. 70: 5117 (1979).ADSCrossRefGoogle Scholar
  76. 63.
    R. Schinke, H. Meyer, U. Buck, and G.H.F. Diercksen, J. Chem. Phys. 80: 5518 (1984).ADSCrossRefGoogle Scholar
  77. 64.
    R. Schinke, Chem. Phys. Lett. 120: 129 (1985).Google Scholar
  78. 65.
    R. Schinke, J. Chem. Phys. 84: 1487 (1986).ADSCrossRefGoogle Scholar
  79. 66.
    D. Debarre, M. Lefebvre, M. Pealat, J.P.E. Taran, D.J. Bamford, and C.B. Moore, J. Chem. Phys. 83: 4476 (1985).ADSCrossRefGoogle Scholar
  80. 67.
    A.U. Grunewald, K.H. Gericke, and F.J. Comes, Chem. Phys. Lett. 132: 121 (1986); K.H. Gericke, S. Klee, and F.J. Comes, J. Chem. Phys. 85: 4463 (1986).ADSGoogle Scholar
  81. 68.
    M.P. Docker, A. Hodgson, and J.P. Simons, Faraday Discuss. Chem. Soc. 82: paper 10 (1986).Google Scholar
  82. 69.
    A. Jacobs, M. Wahl, R. Walter, and J. Wolfrum, Applied Physics B, 42: 173 (1987).CrossRefGoogle Scholar
  83. 70.
    U. Meier, V. Staemmler, and J. Wasilewski, to be published.Google Scholar
  84. 71.
    R.H. Hunt, R.A. Leacock, C.W. Peters, and K.T. Hecht, J. Chem. Phys 42: 1931 (1965).ADSCrossRefGoogle Scholar
  85. 72.
    M. Shapiro and R. Bersohn, J. Chem. Phys. 73: 3810 (1980).ADSCrossRefGoogle Scholar
  86. 73.
    G.N.A. van Veen, T. Baller, A.E. de Vries, and M. Shapiro, Chem. Phys. 93: 277 (1985).ADSCrossRefGoogle Scholar
  87. 74.
    R.A. Marcus, J. Chem. Phys. 54: 3965 (1971), 56: 311 (1972); 59: 5135 (1973).ADSCrossRefGoogle Scholar
  88. 75.
    M. Shapiro, Chem. Phys. Lett. 81: 521 (1981).ADSCrossRefGoogle Scholar
  89. 76.
    M.S. Child and M. Shapiro, Mol. Phys. 48: 111 (1983).ADSCrossRefGoogle Scholar
  90. 77.
    K. Watanabe and M. Zelikoff, J. Opt. Soc. Am. 43: 753 (1953).ADSCrossRefGoogle Scholar
  91. 78.
    E. Segev and M. Shapiro, J. Chem. Phys. 73: 2001 (1980); 77: 5604 (1982).ADSCrossRefGoogle Scholar
  92. 78.
    E. Segev and M. Shapiro, J. Chem. Phys. 73: 2001 (1980); 77: 5604 (1982).ADSCrossRefGoogle Scholar
  93. 78.
    E. Segev and M. Shapiro, J. Chem. Phys. 73: 2001 (1980); 77: 5604 (1982).Google Scholar
  94. 81.
    V. Staemmler and A. Palma, Chem. Phys. 93: 63 (1985).CrossRefGoogle Scholar
  95. 82.
    V. Engel, R. Schinke, and V. Staemmler, Chem. Phys. Lett. 130: 413 (1980).ADSCrossRefGoogle Scholar
  96. 82.
    V. Engel, R. Schinke, and V. Staemmler, Chem. Phys. Lett. 130: 413 (1980).ADSCrossRefGoogle Scholar
  97. 84.
    R. Schinke, V. Engel, and V. Staemmler, J. Chem. Phys. 83: 4522 (1985).ADSCrossRefGoogle Scholar
  98. 85.
    P. Andresen, G.S. Ondrey, and B. Titze, Phys. Rev. Lett. 50: 486 (1983).ADSCrossRefGoogle Scholar
  99. 86.
    R. Schinke, V. Engel, and V. Staemmler, Chem. Phys. Lett. 116: 165 (1985).ADSCrossRefGoogle Scholar
  100. 87.
    G.G. Balint-Kurti, J. Chem. Phys. 84: 4443 (1986).ADSCrossRefGoogle Scholar
  101. 88.
    K.S. Sorbie and J.N. Murrell, Mol. Phys. 29: 1387 (1975); 31: 905 (1976).Google Scholar
  102. 89.
    J. Manz, Comments At. Mol. Phys. 17: 91 (1985).Google Scholar
  103. 90.
    P. Andresen, V. Beushausen, D. Häusler, and H.W. Lülf, J. Chem. Phys. 83: 1429 (1985).ADSCrossRefGoogle Scholar
  104. 91.
    T. Orlikowski and M.H. Alexander, J. Chem. Phys. 79: 6006 (1983).ADSCrossRefGoogle Scholar
  105. 92.
    H. Joswig, P. Andresen, and R. Schinke, J. Chem. Phys. 85: 1904 (1986).ADSCrossRefGoogle Scholar
  106. 93.
    W.G. Hawkins and P.L. Houston, J. Chem. Phys. 76: 729 (1982).ADSCrossRefGoogle Scholar
  107. 94.
    H.T. Wang, W.S. Felps, and S.P. McGlynn, J. Chem. Phys. 67: 2614 (1977).ADSCrossRefGoogle Scholar
  108. 95.
    R.T. Pack, J. Chem. Phys. 65: 4765 (1976).ADSCrossRefGoogle Scholar
  109. 96.
    K.C. Kulander and J.C. Light, J. Chem. Phys. 85: 1938 (1986).ADSCrossRefGoogle Scholar
  110. 97.
    V. Engel and R. Schinke, to be published.Google Scholar
  111. 98.
    F. Lahmani, C. Lardeux and D. Solgadi, Chem. Phys. Lett. 102: 523 (1983).Google Scholar
  112. 99.
    B.A. Keller, P. Felder, and J.R. Huber, J. Phys. Chem. 91: 1114 (1987).Google Scholar
  113. 100.
    P. Tarte, J. Chem. Phys. 20: 1570 (1952).ADSCrossRefGoogle Scholar
  114. 101.
    M. Nonella and J.R. Huber, Chem. Phys. Lett. 131: 376 (1986).ADSCrossRefGoogle Scholar
  115. 102.
    S. Hennig, V. Engel, R. Schinke, M. Nonella, and J.R. Huber, J. Chem. Phys. 87: 3522 (1987).Google Scholar
  116. 103.
    J.R. Taylor, “Scattering Theory,” Wiley, New York (1972).Google Scholar
  117. 104.
    R. Vasudev, R.N. Zare, and R.N. Dixon, J. Chem. Phys. 80: 4863 (1983).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Reinhard Schinke
    • 1
  1. 1.Max-Planck-Institut für StrömungsforschungGöttingenGermany

Personalised recommendations