Chaos and Collisions: Introductory Concepts

  • William P. Reinhardt
Part of the NATO ASI Series book series (NSSB, volume 196)


Recent developments in the theory of non-linear Hamiltonian dynamics have changed the way in which classical phase space should be viewed. This change in viewpoint has been absorbed by workers in semi-classical quantization of the energy levels of systems of several coupled degrees of freedom, but is only recently having an impact on our thinking about atomic and molecular dynamics. What is done in these lectures is to introduce the elementary concepts needed to understand the nature and structure of chaotic phase space, and the role of time independent phase space structures on the dynamical processes controlled by them. Many illustrations involving the dynamics of classical two degree of freedom systems are introduced, and hints at generalization to higher numbers of active degrees of freedom, and to the inclusion of quantum effects are provided.


Phase Space Periodic Orbit Hamiltonian System Invariant Torus Invariant Curve 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1).
    L. A. Steen, Science, 240, 611(1988)MathSciNetADSMATHCrossRefGoogle Scholar
  2. 2).
    E. P. Wigner, Commun. Pure and Appl. Math. 13,1(1960). This is reprinted in Mathematical analysis of physical systems, R. E. Mickens, Ed. Van Nostrand, New York, 1985, pl.Google Scholar
  3. 3).
    B.B. Mandelbrot, Fractals: Form, Chance, and Dimension, W. H. Freeman & Co. San Francisco 1977.Google Scholar
  4. 4).
    B.B. Mandelbrot, The Fractal Geometry of Nature, W. H. Freemand & Co. San Francisco, 1983.Google Scholar
  5. 5).
    H.-O. Peitgen and P. H. Richter, The Beauty of Fractals, Springer, New York, Berlin, 1986.Google Scholar
  6. 6).
    J. Gleick, Chaos, Making a New Science, Viking, New York, 1987.Google Scholar
  7. 7).
    V.I. Arnold, Mathematical Methods of Classical Mechanics, Springer, New York, Berlin, 1980.Google Scholar
  8. 8).
    R. Abraham and J. E. Marsden, Foundations of Mechanics, 2nd Edition, Benjamin/Cummings, Reading Mass, 1978.MATHGoogle Scholar
  9. 9).
    A. J. Lichtenberg and M. A. Lieberman, Regular and Stochastic Motion, Springer, New York, Berlin, 1983.Google Scholar
  10. 10).
    J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer, New York, Berlin, 1983.Google Scholar
  11. 11).
    P. Cvitanovic(Ed.),Universality in Chaos,Adam Hilger,Bristol (UK), 1984.Google Scholar
  12. 12).
    C. W. Horton, L. E. Reichl, and V. G. Szebehely (Eds.), Long Time Prediction in Dynamics, Wiley-Interscience, New York, 1983.Google Scholar
  13. 13).
    R. H. G. Helleman, in Fundamental Problems in Statistical Mechanics V, E. G. D. Cohen, Ed. North-Holland, Amsterdam, 1980, p165. This review contains a very substantial list of references.Google Scholar
  14. 14).
    M. V. Berry, in Topics in Nonlinear Dynamics a Tribute to Sir Edward Bullard, S. Jorna, Ed. American Institute of Physics (New York), AIP Conference Proceedings 46 p16, 1978.Google Scholar
  15. 15).
    J. Ford, Adv. Chem. Phys. 24,155(1973); and in Fundamental Problems in Statistical Mechanics III, E. G. D. Cohen, Ed. North-Holland, Amsterdam, 1975, p215.Google Scholar
  16. 16).
    Dynamical Chaos, Proc. Roy. Soc.(London) Series A, 413, 3–199 (1987).Google Scholar
  17. 17).
    I. C. Percival, Adv. Chem. Phys. 36,1(1977).CrossRefGoogle Scholar
  18. 18).
    W. P. Reinhardt, in Mickens (Ed.) Mathematical Analysis of Physical Systems, see Ref. 2, p 169.Google Scholar
  19. 19).
    D. W. Noid, M. L. Koszykowski and R. A. Marcus, Ann. Rev. Phys.Chem.32,267(1981).ADSCrossRefGoogle Scholar
  20. 20).
    P. Brumer and M. Shapiro, Adv. Chem. Phys. 70,365(1988).CrossRefGoogle Scholar
  21. 21).
    C. Grebogi, E. Ott and J. A. Yorke, Science 238,632(1987).MathSciNetADSMATHCrossRefGoogle Scholar
  22. 22).
    S. Smale, The Mathematics of Time, Essays on Dynamical Systems, Economic Processes and Related Topics, Springer, New York, Berlin, 1980.Google Scholar
  23. 23).
    M. Henon and C. Heiles, Astron. J. 69,73(1964).MathSciNetADSCrossRefGoogle Scholar
  24. 24).
    G. Contopoulos, Astron J. 68,1(1963).MathSciNetADSCrossRefGoogle Scholar
  25. 25).
    H. Goldstein, Classical Mechanics, Addison-Wesley, Reading, Mass. 1951.Google Scholar
  26. 26).
    E. Fermi, J. Pasta and S. ULam, Los Alamos Technical Report (1954); reprinted in Nonlinear Wave Motion, A. C. Newell (Ed.) AMS Lectures in Appl. Math. 15,143(1974).Google Scholar
  27. 27).
    S. Ulam, Adventures of a Mathematician, Scribners, New York, 1976, pp225 et. seq.Google Scholar
  28. 28).
    A. N. Kolmogorov, Address to the 1954 International Congress of Mathematicians, reprinted in English in Ref 8, p741.MathSciNetGoogle Scholar
  29. 29).
    V. I. Arnold, Russian Mathematical Surveys 18, 9 (1963).ADSCrossRefGoogle Scholar
  30. 30).
    J. Moser, Memoirs of the American Manthematical Society, 81,1(1968).Google Scholar
  31. 31).
    A. Ramnani, B. Dorizzi and B. Grammaticos, Phys. Rev. Letts. 49,1539(1982).ADSCrossRefGoogle Scholar
  32. 32).
    J. Weiss, M. Tabor and G. Carnevale, J. Math. Phys. 24,522(1983).MathSciNetADSMATHCrossRefGoogle Scholar
  33. 33).
    A. Carnegie and I. C. Percival, J. Phys. A 17,801(1984).MathSciNetADSCrossRefGoogle Scholar
  34. 34).
    S. G. Matinyan, G. K. Savvidi and N. G. Ter-Arutyunyan-Savvidi, Sov. Phys. JETP 53,421(1981).Google Scholar
  35. 35).
    S-J. Chang, Phys. Rev. D 29,259(1984)Google Scholar
  36. 36).
    M. Gutzwiller, Physica D 5,183(1982).Google Scholar
  37. 37).
    M. Gutzwiller, J. Phys. Chem.92,3154(1988).Google Scholar
  38. 38).
    W.L. Hase in Dynamics of Molecular Collisions, W. H. Miller, Ed., Modern Theoretical Chemistry Vol 2, Plenum, New York, 1976, p121.Google Scholar
  39. 39).
    P. Pechukas, ibid. p269.Google Scholar
  40. 40).
    D. G. Truhlar, W. L. Hase and J. T. Hynes, J. Phys. Chem.87,2664(1983).Google Scholar
  41. 41).
    R. Wolfe and W. L. Hase, J. Chem. Phys.72,316(1980).Google Scholar
  42. 42).
    R. M. Hedges and W. P. Reinhardt, Chem. Phys. Letts.91,241(1982).Google Scholar
  43. 43).
    R. M. Hedges and W. P. Reinhardt, J. Chem. Phys.78,3964(1983).Google Scholar
  44. 44).
    R. M. Hedges, R. T. Skodje, F. Borondo, and W. P. Reinhardt in, Resonances in Electron-Molecule Scattering, Van der Waals Complexes and Reactive Chemical Dynamics, D. Truhlar, Ed. ACS Symposium 263,323(1984).Google Scholar
  45. 45).
    A. Carrington and R. A. Kennedy, J. Chem. Phys.81,91(1984).Google Scholar
  46. 46).
    J. M. Gomez-Llorente, J. Zakrzewski,H.S. Taylor and K. Kulander, J. Chem. Phys.89,5959(1888);Google Scholar
  47. J. M. Gomez-Llorente and E. Pollak, J. Chem. Phys. 89,1195(1988).Google Scholar
  48. 47).
    C. Jaffe and W. P. Reinhardt, J. Chem. Phys.77,5191(1982)Google Scholar
  49. 48).
    R. Shirts and W. P. Reinhardt, J. Chem. Phys.77,5204(1982).Google Scholar
  50. 49).
    W. P. Reinhardt, J. Phys. Chem.86,2158(1982).Google Scholar
  51. 50).
    N. DeLeon and B. Berne, J. Chem. Phys.75,3495(1981).Google Scholar
  52. 51).
    G. Contopoulos, Astron. J.76,147(1971).Google Scholar
  53. 52).
    M.J. Davis and A. F. Wagner in ACS Symposium 263,337(1984), see ref 44)Google Scholar
  54. 53).
    A. B. Trenwith and B. S. Rabinovitch, J. Chem. Phys. 85,1694(1986);Google Scholar
  55. A. B. Trenwith, D. A Oswald, B. S. Rabinovitch and M. C. Flowers, J. Phys. Chem. 91,4398(1987).Google Scholar
  56. 54).
    J. Hutchinson, J. T. Hynes and W. P. Reinhardt, J. Chem. Phys. 79,4247(1983).Google Scholar
  57. 55).
    C. Duneczky and W. P. Reinhardt, Trans. Faraday. Soc. II, 84,1511(1988).Google Scholar
  58. 56).
    M. Henon, Quart. Appl. Math. 27,291(1969).Google Scholar
  59. 57).
    C. L. Siegel, Ann. Math. 43,607(1942).Google Scholar
  60. 58).
    B. Chirikov, Phys. Reports 52,263(1979).Google Scholar
  61. 59).
    H. Rademacher, Higher Mathematics from and Elementary Point of View, Birkhauser, Boston, Basel, 1983, see especially Chapter 7.Google Scholar
  62. 60).
    G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Oxford, 4th Edition 1971, see Chapters 10, 11.Google Scholar
  63. 61).
    J. M. Greene, J. Math. Phys. 20,1183(1979).Google Scholar
  64. 62).
    I. C. Percival, in Am. Inst. Phys. Conf. Proc. 57,302(1979).Google Scholar
  65. 63).
    S. Aubry and P. Y. LeDaeron, Physica D 8,381(1983).Google Scholar
  66. 64).
    J. N. Mather, Topology 21,457(1982).Google Scholar
  67. 65).
    R. S. MacKay, J. D. Meiss and I. C. Percival, Physical D13,55(1984).Google Scholar
  68. 66).
    D. Bensimon and L. P. Kadanoff, ibid. D13,82(1984).Google Scholar
  69. 67).
    E. P. Wigner,J. Chem. Phys. 5,720(1937).Google Scholar
  70. 68).
    J. Keck, Adv. Chem. PHys. 13,85(1967).Google Scholar
  71. 69).
    R. S. MacKay and J. D. Meiss, J. Phys. A 19,L225(1986).Google Scholar
  72. 70).
    R. De Vogelaere and M. Boudart, J. Chem. Phys. 23,1236(1955).Google Scholar
  73. 71).
    E. Pollak and P. Pechukas, J. Chem. Phys. 69,1218(1978).Google Scholar
  74. 72).
    M. J. Davis, J. Chem. Phys. 83,1016(1985).Google Scholar
  75. 73).
    M. J. Davis and S. K. Gray, J. Chem. Phys. 84,5389(1986)Google Scholar
  76. 74).
    M. J. Davis, J. Chem. Phys. 86, 3978 (1987).Google Scholar
  77. 75).
    R. T. Skodje and M. J. Davis, J. Chem. Phys. 88,2429(1988).Google Scholar
  78. 76).
    M. Henon, Commun. Math. Phys. 50,69(1976).Google Scholar
  79. 77).
    W. P. Reinhardt, unpublished work, presented at the NATO ASI, Summer 1987.Google Scholar
  80. 78a).
    E. C. Vazquez, W. H. Jefferys and A. Sivaramakrishnan, Physica D 29,84(1987);Google Scholar
  81. 78b).
    S. Bleher, C. Grebogi. E. Ott and R. Brown, Phys. Rev. A 39,930(1988).Google Scholar
  82. 79).
    J. M. Greene, R. S. MacKay and J. Stark, Physica D 21,267(1986).Google Scholar
  83. 80).
    J. R. Stine and R. A. Marcus, Chem. Phys. Letts 29,575(1974).Google Scholar
  84. 81).
    C. C. Rankin and W. H. Miller, J. Chem. Phys. 55,3150(1971).Google Scholar
  85. 82).
    L. Gottdiener, Mol. Phys. 29, 1585 (1975).Google Scholar
  86. 83).
    D. W. Noid, S. K. Gray and S. A. Rice, J. Chem. Phys. 84,2649(1986).Google Scholar
  87. 84).
    A. Tiyapan and C. Jaffe private communication Summer 1988.Google Scholar
  88. 85).
    W. P. Reinhardt, unpublished work.Google Scholar
  89. 86).
    R. W. Easton, Trans. Am. Math. Soc. 294,719(1986).Google Scholar
  90. 87).
    S. Kim and S. Ostlund, Phys. Rev. A 34,3426(1986).Google Scholar
  91. 88).
    C. Martens, M. J. Davis and G. Ezra, Chem. Phys. Letts.142,519(1987).Google Scholar
  92. 89).
    R. Gillilan, Thesis, University of Pennsylvania, 1988, unpublished.Google Scholar
  93. 90).
    R. Gillilan and W. P. Reinhardt, Chem. Phys. Letts (submitted).Google Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • William P. Reinhardt
    • 1
  1. 1.Department of ChemistryUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations