Statistical Restoration of Astronomical Images

  • R. Molina
  • N. Perez de la Blanca
  • B. D. Ripley
Part of the Ettore Majorana International Science Series book series (EMISS, volume 40)


It is well known that the theoretical intensity at a point (x,y) from an astronomical image is given
$$ \tilde Z(x,y) = \iint {S(x - x',y - y')h(x',y')dx'dy'} $$
where S(,) represents the true underlying intensity and h(,) is the point spread function (psf)-However, when we consider discrete samples on a rectangular grid, the intensity measured at each pixel (i,j) is given by
$$ {{\rm{Z}}_{{\rm{ij}}}} = \int_{{\rm{i}}{1 \over 2}}^{{\rm{i}} + {1 \over 2}} {\smallint _{{\rm{j}}{1 \over 2}}^{{\rm{j}} + {1 \over 2}}{\rm{\tilde Z}}} ({\rm{x}},{\rm{y}}){\rm{dx dy + }}{{\rm{\varepsilon }}_{{\rm{ij}}}}$$
where εij represents the external contribution, in our case background and random noise. The main problem in the restoration of astronomical images is to estimate S(,) on a grid of points from the Z values, knowledge of the psf and adequate assumptions about the noise process.


Point Spread Function Globular Cluster External Contribution Theoretical Intensity Deconvolution Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barndorff-Nielsen, O., 1979, Models for non-Gaussian variation with applications to turbulence, Proc. R. Soc. London A, 368:501.MathSciNetADSMATHCrossRefGoogle Scholar
  2. Besag, J., 1986, On the statistical analysis of dirty pictures, J. Roy. Statist. Soc. B, 48:259.MathSciNetMATHGoogle Scholar
  3. Besag, J., and Kempton, R., 1986, Statistical analysis of field experiments using neighbouring plots, Biometrics, 42:231.MATHCrossRefGoogle Scholar
  4. Blaesild, P., 1981, The two dimensional hyperbolic distribution and related distributions with an application to Johannsen’s bean data, Biometrika, 68:251.MathSciNetMATHCrossRefGoogle Scholar
  5. Buonanno, R., Buscema, G., Corsi, C.E., Ferraro, I., and Iannicola, G., 1983, Automated photographic photometry of stars in globular clusters, Astron. Astrophys.. 126:278.ADSGoogle Scholar
  6. Mofatt, A.F.J., 1969, A theoretical investigation of focal stellar images in the photographic emulsion and application to photographic photometry, Astron. Astroph., 3:455.ADSGoogle Scholar
  7. Penny, A.J., and Dickens, R.J., 1986, CCD photometry of the globular cluster NGC 6752, Mon. Not. R. Astr. Soc., 220:845.ADSGoogle Scholar
  8. Ripley, B.D., 1981, “Spatial Statistics”,Wiley, New York.MATHCrossRefGoogle Scholar
  9. Ripley, B.D., 1988, “Statistical Inference for Spatial Processes”,Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  10. Stetson, P.B., 1987, Daofot: A computer program for crowded-field stellar photometry, Publ. Astr. Soc. Pacific, 99:191ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • R. Molina
    • 1
  • N. Perez de la Blanca
    • 1
  • B. D. Ripley
    • 2
  1. 1.Dept. de Ciencias de la Computacion e Intelligencia ArtificialUniv. Granada and Inst. de Astrofisica de AndaluciaSpain
  2. 2.Dept. of MathematicsUniv. of StrathclydeGlasgowScotland

Personalised recommendations