Advertisement

Cosmic Background Explorer (COBE) Satellite Anisotropy Experiment Data Analysis Techniques

  • S. Torres
  • J. Aymon
  • C. Backus
  • C. Bennett
  • S. Gulkis
  • R. Hollenhorst
  • D. Hon
  • Q. H. Huang
  • M. Janssen
  • S. Keihm
  • L. Olson
  • G. Smoot
  • E. Wright
Part of the Ettore Majorana International Science Series book series (EMISS, volume 40)

Abstract

The COBE Differential Microwave Radiometer (DMR) experiment will measure the anisotropy of the cosmic microwave background radiation (CMBR). The initial phase of data analysis uses a ‘sparse matrix’ algorithm to convert the differential temperature data into sky maps. The sky maps are then fitted to a ‘fast’ multipole expansion in spherical harmonics. Since the CMBR anisotropy is very weak, powerful techniques are used to extract the angular unevenness of the sky from the low signal-to-noise data. Instrument signature and other systematic errors are subtracted by fitting models of these effects. Test results are presented.

Keywords

Cosmic Microwave Background Radiation Spherical Harmonic Expansion Microwave Emission Spherical Harmonic Coefficient Pixel Pair 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Smoot, G. F., in “Data Analysis in Astronomy”, (1988, this proceedings).Google Scholar
  2. 2.
    Penzias, A. A. and Wilson, R. W., Ap. J., 142, 419 (1965).ADSCrossRefGoogle Scholar
  3. 3.
    Mather, J. C, Opt. Eng. 21 (1982).Google Scholar
  4. 4.
    Brice, C., Luther, H. A., and Wilkes, J.O., “Applied Numerical Methods,” Wiley, New York (1969).MATHGoogle Scholar
  5. 5.
    Golub, G. H., and Van Loan, C. F.,“Matrix Computations,” John Hopkins University Press, Baltimore (1983).MATHGoogle Scholar
  6. 6.
    L. J. Ricardi, IEEE Transactions on Computers, June 1972, p.583.Google Scholar
  7. 7.
    Haslam, C. G. T., et. al. As. Ap. Suppl. Ser. 47, 1 (1982).ADSGoogle Scholar
  8. 8.
    Neugebauer, G., et. al., Ap. J. Let., 278, L1 (1984).ADSCrossRefGoogle Scholar
  9. 9.
    Novikov, I. D., Soviet Astronomy 427, 12 (1968).Google Scholar
  10. 10.
    Lukash, et. al., “Early Evolution of the Universe and its Present Structure,” in IAU symposium 104, ed. G. Abell and G. Chincarini, Dordrect, Reidel (1984).Google Scholar
  11. 11.
    Bajtlik, S., et. al., As. J. 300, 463 (1986).Google Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • S. Torres
    • 1
  • J. Aymon
    • 2
  • C. Backus
    • 3
  • C. Bennett
    • 4
  • S. Gulkis
    • 5
  • R. Hollenhorst
    • 1
  • D. Hon
    • 1
  • Q. H. Huang
    • 1
  • M. Janssen
    • 5
  • S. Keihm
    • 5
  • L. Olson
    • 1
  • G. Smoot
    • 2
  • E. Wright
    • 6
  1. 1.STXLanhamUSA
  2. 2.LBLBerkeleyUSA
  3. 3.SARLanhamUSA
  4. 4.NASA-GSFCGreenbeltUSA
  5. 5.JPLPasadenaUSA
  6. 6.UCLALos AngelesUSA

Personalised recommendations