A Model for the Infrared Space Observatory Photometer

  • A. Etemadi
Part of the Ettore Majorana International Science Series book series (EMISS, volume 40)


The Infrared Space Observatoy (ISO) consists of a cryogenically cooled telescope and instrumentation mounted on a 3-axis stablised spacecraft. The launch date for the spacecraft is currently the 1st of April 1993. The expected lifetime of the mission is one and a half years. The Photometer subexperiment (ISOPHOT) was designed to carry out photopolarimetry in the wavelength range 2-200/μm with a photometric accuracy of one percent. A software model of ISOPHOT has been recommended as a means of generating test data for the ISOPHOT scientific data analysis software. Discussions are currently in progress regarding the production of this model, in which case we will attempt to make this model as general as possible so that it may be used in modelling other similar experiments. In this paper we will discuss the problems associated with this work, the overall design concept, and the implementation.


Point Spread Function Generate Test Data Infrared Space Observatory Expected Lifetime Software Task 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Neugebauer, H.J. Habing, R. van Duinen, H. H. Aumann, B. Baud, C. A. Beichman, D. A. Beintema, N. Boggess, P. E. Clegg, T. de Jong, J. P. Emerson, T. N. Gautier, F. C. Gillett, S. Harris, M. G. Hauser, J. R. Houck, R. E. Jennings, F. J. Low, P. L. Marsden, G. Miley, F. M. Olnon, S. R. Pottasch, E. Raimond, M. Rowan-Robinson, B. T. Soifer, R. G. Walker, P. R. Wesselius, and E. Young, Infrared Astronomical Satellite (IRAS) Mission, The Astronomical Journal. 278:L1–L6 (1984)ADSGoogle Scholar
  2. 2.
    W. Aalders, J. Wijnbergen, R. D. Joseph, R. Katterloher, D. Lemke, L. Nordh,G. Olofsson, P. Salinari and F. Sibille, Infrared Space Observatory, European Space Agency publication, SCI(82)6 (1982)Google Scholar
  3. 3.
    F. Sibille, C. Cesarsky, S. Cazes, D. Cesarsky, A. Chedin, M. Combes, M. Gorisse, T. Hawarden, P. Lena, M. S. Longair, R. Mandolesi, L. Nordh, P. Persi, D. Rouan, A. Sargent, F. Sibille, L. Vigroux and R. Wade, ISOCAM: An Infrared Camera for ISO, in: “SPIE Vol. 589 Instrumentation for Optical Remote Sensing from Space”589:170 (1985)Google Scholar
  4. 4.
    Th. de Graauw, D. Beintema, W. Luinge, G. Ploeger, K. Wildeman, J. Wijnbergen, S. Drapatz, L. Haser, F. Melzner, J. Stöcker, K. van der Hucht, Th. Kamperman, C. van Dijklmizen, II. van Agthoven, II. Visser, C. Smorenburg, The Short Wavelength Spectrometer for ISO, in: “SPIE Vol. 589 Instrumentation for Optical Remote Sensing from Space”589:174 (1985)Google Scholar
  5. 5.
    R.J. Emery, P. A. R. Ade, I. Furniss, M. Joubert and P. Saraceno, The Long Wavelength Spectrometer (LWS) for ISO, in: “SPIE Vol. 589 Instrumentation for Optical Remote Sensing from Space”589:194 (1985)Google Scholar
  6. 6.
    ISOPIIOT Phase C/D Proposal No. 253-0-87, Prepared for the Deutsche Forshungs-und Versuchsanstalt für Luft-und Raumfahrt by Dornier-System GmbH (1987)Google Scholar
  7. 7.
    M. Rosa and D. Baade, Modelling Space Telescope Observations,in: European Southern Observatory Messenger, 45 (1986)Google Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • A. Etemadi
    • 1
  1. 1.Max-Planck-Institut für KernphysikHeidelberg 1Germany

Personalised recommendations