Advertisement

Oxygen Diffusion Through Mitochondrial Membranes

  • T. Koyama
  • M. Kinjo
  • T. Araiso
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 248)

Abstract

The membrane viscosity of myocardial mitochondria was measured recently with a time-resolved fluorescence technique. As expected from the low concentration of cholesterol in mitochondrial membranes, the viscosity was relatively small. Treatment with phospholipase A2 caused an increase in membrane viscosity. To date, the influence of mitochondrial membrane on the oxygen transport to the oxygen-consuming site has not been discussed.

Keywords

Mitochondrial Membrane Oxygen Diffusion Oxygen Transport Oxygen Consumption Rate Effective Diffusion Coefficient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Araiso, T., Sindo, Y., Arai, T. and Koyama, T. 1986, Viscosity and order in erythrocyte membranes studied with nanosecond fluorometry. Biorheology 23, 467–483.PubMedGoogle Scholar
  2. Bing, R. J., Hammond, M. M., Handesman, J. C., Powers, S. R., Spencer, F. C., Eckenhoff, J. E., Goodale, W. T., Hafkenshiel, J. H., Kety, S. S. 1949, The measurement of coronary blood flow, oxygen consumption and efficiency of the left ventricle in man. Amer. H. J. 38, 1–24.CrossRefGoogle Scholar
  3. Crank, J. 1967, Mathematics of diffusion, Clarendon Press Oxford.Google Scholar
  4. Jones D. P. and Kennedy, F. G. 1986, Analysis of intracellular oxygenation of isolated adult cardiac myocytes. Am. J. Physiol. 250 (Cell Physiol. 19): C384–C390.PubMedGoogle Scholar
  5. Kawato, S., Kinosita, K. Jr. and Ikegami, A. 1977, Dynamic structure of lipid bilayers studied by nanosecond fluorescence technique. Biochemistry 11, 2319–2324.CrossRefGoogle Scholar
  6. Kinjo, M. Araiso, T., and Koyama, T. 1988, The effect of phospholipid A2 on dynamic microstructure of phospholipid layer of mitochondria from rat myocardium. J. Appl. Cardiol, in press.Google Scholar
  7. Kinoshita, K. Jr., Kawato, S. and Ikegami, A. 1977, A theroty of fluorescence polarization decay in membranes. Biophys. J. 20, 289–305.CrossRefGoogle Scholar
  8. Koyama, T., Araiso, T. 1986, Oxygen diffusion coefficient of cell membranes. In: Longmuir IS ed. Oxygen Transport to Tissue vol. VIII, new York and London, Plkenum Press, 99–106.Google Scholar
  9. McCabe, M. 1986, The solubility of oxygen in erythrocyte ghosts and the flux of oxygen across the red cell membrane. Oxygen Transport to Tissue vol. VIII. Ed. I.S. Longmuir, Plenum Press, New York and London, pp. 13–20.Google Scholar
  10. Millican G. A. 1939, Muscle hemoglobin. Physiol. Rev. 19, 505–523.Google Scholar
  11. Page, E. and McCallister, L. P. 1973, Quantitative electron microscopic description of heart muscle cells. Application to normal, hypertrophied and thyroxin-stimulated hearts. Amer. J. Cardiol. 31, 172–181, 1973.PubMedCrossRefGoogle Scholar
  12. Thews, G. 1962, Die Sauerstoffdrucke im Herzmuskelgewebe. Pflugers Arch. 276, 166–181.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • T. Koyama
    • 1
  • M. Kinjo
    • 1
  • T. Araiso
    • 1
  1. 1.Research Institute of Applied Electricity, Hokkaido University060 SaporoJapan

Personalised recommendations