Advertisement

Hemodilution and Myocardial Oxygen Supply. The Influence of Fluosol-DA

  • H. Vogel
  • H. Günther
  • D. K. Harrison
  • W. Anderer
  • M. Kessler
  • K. Peter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 248)

Abstract

Attempts to minimize the risk of transmission of infectious diseases have again focussed clinical interest on isovolemic hemodilution (Messmer 1978). Being the only organ which has to increase its specific work in order to compensate for acute anemia, the heart is in end effect the limiting organ for an extreme hemodilution (Sunder-Plassmann et al. 1976). Coronary vasodilation leading to a maximal increase in coronary flow compromises the coronary reserve. Increases of oxygen demand or further hemodilution will lead to myocardial hypoxia and consequently to myocardial failure (v.Restorff et al. 1975).

Keywords

Coronary Flow Coronary Reserve Myocardial Oxygen Supply Subendocardial Layer Isovolemic Hemodilution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Biro, G.P., 1982, Comparison of acute cardiovascular effects and oxygen supply following hemodilution with dextran, strom-free hemoglobin solution, and fluorocarbon suspension. Cardiovasc. Res. 16:194.PubMedCrossRefGoogle Scholar
  2. Brandi, G., McGregor, M., 1969, Intramural pressure in the left ventricle of the dog. Cardiovasc. Res. 3;472.PubMedCrossRefGoogle Scholar
  3. Brazier, J., Cooper, N., Maloney, J.V., Buckberg, G., 1974, The adequacy of myocardial oxygen delivery in acute normovolemic anemia. Surgery 75:508.PubMedGoogle Scholar
  4. Chien, S., 1972, Present state of blood rheology. In: “Hemodilution. Theoretical basis and clinical application”, K. Messmer and H. Schmid-Schönbein, eds., Karger, Basel CH.Google Scholar
  5. Clark, L.C., Gollan, F., 1966, Survival of mammals breathing organic liquids equilibrated with oxygen at atmospheric pressure. Science 152:1755PubMedCrossRefGoogle Scholar
  6. Faithfull, N.S., Erdmann, W., Fennema, M., Kok, A., 1986, Effect of hemodilution with fluorocarbons or dextran on oxygen tensions in the acutely ischemic myocardium. Brit. J. Anaesth. 58: 1031.PubMedCrossRefGoogle Scholar
  7. Frank, K.H., 1985, Optische Streuung an biologischen Partikeln und Zellen. Thesis, Friedrich-Alexander Universität Erlangen-Nürnberg, FRG.Google Scholar
  8. Harrison, D.K., Birkenhake, S., Knauf, S., Hagen, N., Beier, I., and Kessler, M., 1988, The role of high flow capillary channels in the local oxygen supply to skeletal muscle. Adv. Exp. Med. Biol. 222:623.PubMedGoogle Scholar
  9. Harrison, D.K., Birkenhake, S., Hagen, N., Knauf, S., and Kessler, M., 1989, Regulation of capillary blood flow: A new concept. This volume.Google Scholar
  10. Kessler, M., Höper, J., Krumme, B.A., 1976, Monitoring of tissue perfusion and cellular function. Anesthesiology. 44:184.CrossRefGoogle Scholar
  11. Kessler, M., Klövekorn W.P., Höper, J., Sebening, F., Brunner, M., Frank, K.H., Harrison, D.K., Kernbach, C., Anderer, W., Richter, H. and Ellermann, R., 1983, Local oxygen supply and regional wall motion of the dog’s heart during critical stenosis of the LAD. Adv. Exp. Med. Biol. 169:331.Google Scholar
  12. Kettler, D., Hellberg, K., Klaess, G., Kontokolias, J.S., Loos, W., and de Vivie, R., 1976, Hämodynamik, Sauerstoffbedarf und Sauerstoffversorgung des Herzens unter isovolämischer Hämodilution. Anaesthesist 25:131.PubMedGoogle Scholar
  13. Marshall, W.G., Boatman, G.B., Dickerson, G., Perlin, A., Todd, E.P., and Utley, J.R., 1976, Shunting, release, and distribution of nine and fifteen micron spheres in myocardium. Surgery., 79,6:631.PubMedGoogle Scholar
  14. Messmer, K.F.W., 1987, Acceptable hematocrits in surgical patients. World J. Surg., 11:41.PubMedCrossRefGoogle Scholar
  15. Naito, R., and Yokoyama, K., 1978, In: “Perflurochemical Blood Substitutes.” Techn. Information, Series No 5. The Green Cross Corporation, Osaka, Japan, 1978.Google Scholar
  16. Potter, R.F., Groom, A.C., 1983, Capillary diameter and geometry in cardiac and skeletal muscle studied by means of corrosion casts. Microvasc. Res. 25:68.PubMedCrossRefGoogle Scholar
  17. V. Restorff, W., Höfling, B., Holtz, J., Bassenge, E., 1975, Effect of increased blood fluidity through hemodilution on coronary circulation at rest and during exercise in dogs. Pflügers Arch. ges. Phys., 357:15.CrossRefGoogle Scholar
  18. Rude, R.E., Glogar, D., Khuri, S.F. Kloner, R.A., Karaffa, S., Müller, J.E., Clark, L.C., Braunwald, E., 1982, Effects of intravenous fluorocarbons during and without oxygen enhancement on acute myocardial ischemic injury assessed by measurement of intramyocardial gas tensions. Amer. Heart J., 103:986.PubMedCrossRefGoogle Scholar
  19. Skalak, T.C., and Schmid-Schönbein, G.W., 1986, The microvasculature in skeletal muscle IV. A model of the capillary network. Microvasc. Res., 32:333.PubMedCrossRefGoogle Scholar
  20. Stein, P.D., Marzilli, M., Sabbah, H.N., and Lee, T., 1980, Systolic and diastolic pressure gradients within the left ventricular wall. Am. J. Physiol. 238 (Heart Circ. Physiol. 7):H 625.Google Scholar
  21. Sunder-Plassmann, L., Kloevekorn, W.P., Messmer, K., 1976, Preoperative hemodilution. Basic adaption mechanisms and limitations in clinical application. Anaesthesist, 25:124.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • H. Vogel
    • 1
  • H. Günther
    • 2
  • D. K. Harrison
    • 2
  • W. Anderer
    • 2
  • M. Kessler
    • 2
  • K. Peter
    • 1
  1. 1.Institut für Anaesthesiologie der Universität MünchenGermany
  2. 2.Institut für Physiologie und Kardiologie der UniversitätErlangen, NürnbergGermany

Personalised recommendations