Does the Area at Risk of Infarction Change Over Time?

  • Reena Sandhu
  • G. P. Biro
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 248)


The size of the hypoperfused zone (area at risk) produced by occluding any given coronary artery shows considerable variation among untreated animals (1). Since the amount of myocardium that will infarct is, to a large extent, dependant upon the size of the area at risk (AAR) (1–3), infarct sizes also show considerable variation. Therefore, it has become conventional to express infarct size as a percentage of the AAR in order to standardize this variable.


Infarct Size Pulmonary Vein Collateral Flow Border Zone Risk Zone 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.E. Lowe, K. A. Reimer and R. B. Jennings, Infarct Size as a Function of the Amount of Myocardium at Risk. Am. J. Pathol., 90:363–380 (1978).PubMedGoogle Scholar
  2. 2.
    S. Koyanagi, C. L. Eastham, D. G. Harrison, and M. L. Marcus, Transmural Variation in the Relationship between Myocardial Infarct Size and Risk Area. Am. J. Physiol., 242 (Heart Circ. Physiol. II): H867–H874 (1982).PubMedGoogle Scholar
  3. 3.
    B. I. Jugdutt, G. M. Hutchins, B. H. Bulkley and L. C. Becker, Myocardial Infarction in the Conscious Dog. Three-Dimensional Mapping of Infarct Size, Collateral Flow and Region at Risk. Circulation. 60:1141–1150 (1979).PubMedGoogle Scholar
  4. 4.
    L. W. Deboer, W. H. Strauss, R. A. Kloner, R. E. Rude, R. F. Davis, P. R. Maroko and E. Braunwald, Autoradiographic Method for Measuring the Ischemic Myocardium at Risk: Effects of Verapamil on Infarct Size after Experimental Coronary Artery Occlusion. Proc. Nat. Acad. Sci., 77:6119–6123 (1980).PubMedCrossRefGoogle Scholar
  5. 5.
    L. G. T. Ribeiro, Influence of the Extent of the Zone at Risk on the Effectiveness of Drugs in Reducing Infarct Size. Circulation., 66(2): 181–186 (1982).PubMedCrossRefGoogle Scholar
  6. 6.
    R. J. Bartrum Jr, D. M. Berkowitz, N. K. Hollenberg, A Simple Radioactive Microsphere Method for Measuring Regional Flow and Cardiac Output. Investigative Radiol., 9:126–132 (1974)CrossRefGoogle Scholar
  7. 7.
    D. M. Yellon, D. J. Hearse, R. Chrome, J. Grannell and R. K. H. Wyse, Characterization of the Lateral Interface Between Normal and Ischemic Tissue in the Canine Heart During Evolving Myocardial Infarction. Am. J. Cardiol., 47:1233–1239 (1981).PubMedCrossRefGoogle Scholar
  8. 8.
    D. M. Yellon, D. J. Hearse, Temporal and Spatial Characteristics of Evolving Cell Injury in Regional Myocardial Ischemia in the Dog. J. Am. Coll. Cardiol., 2:661–670 (1983).PubMedCrossRefGoogle Scholar
  9. 9.
    M. J. Janse, Where is the Salvable Zone? in: “Therapeutic Approaches to Myocardial Infarct Size Limitation”, D. J. Hearse et. al. eds, Raven Press, New York, pp 61–79 (1984).Google Scholar
  10. 10.
    D. J. Hearse, Why are we still in doubt about Infarct Size Limitation? The Experimentalist’s Viewpoint in: Therapeutic Approaches to Myocardial Infarct Size Limitation, D. J. Hearse et. al. eds, Raven Press, New York, pp 17–41 (1984).Google Scholar
  11. 11.
    K. Przyklenk, M. T. Vivaldi, O. A. Malcolm, F. J. Schoen and R.A. Kloner, Capillary Anastamoses between the Left Anterior Descending and Circumflex Circulations in the Canine Heart: Possible Importance during Coronary Artery Occlusion. Microvasc. Res., 31:54–65 (1984).CrossRefGoogle Scholar
  12. 12.
    E. M. Okun, S. M. Factor and E. S. Kirk, End Capillary Loops in the Heart: An Explanation for Discrete Myocardial Infarction Without Border Zones. Science. 79:565–566 (1979).CrossRefGoogle Scholar
  13. 13.
    M. Fukunami, D. M. Yellon, Y. Kudoh, M. P. Maxwell, R. K. H. Wyse and D. J. Hearse, Spatial and Temporal Characteristics of the Transmural Distribution of Collateral Flow and Energy Metabolism during Regional Myocardial Ischemia in the Dog. Can. J. Cardiol., 3(2):94–103 (1987).PubMedGoogle Scholar
  14. 14.
    R. H. Murdock Jr, D. M. Harlan, J. J. Morris III, W. W. Pryor Jr. and F. R. Cobb, Transitional Blood Flow Zones between Ischemic and Nonischemic Myocardium in the Awake Dog. Analysis based on the Distribution of the Intramural Vasculature. Circ. Res., 52:451–459 (1983).PubMedGoogle Scholar
  15. 15.
    P. O. Sjöquist, G. Duker and O. Almgren, Distribution of the Collateral Blood Flow at the Lateral Border of the Ischemic Myocardium after Acute Coronary Occlusion in the Pig and the Dog. Basic Res. Cardiol., 79:164–175 (1984).PubMedCrossRefGoogle Scholar
  16. 16.
    S. M. Factor, E. H. Sonnenblick and E. S. Kirk, The Histological Border Zone of Acute Myocardial Infarction-Islands or Penninsulas? Am. J. Pathol., 92:111–124 (1978).PubMedGoogle Scholar
  17. 17.
    F. R. Cobb, A. Chu,: Myocardial Infarction and Risk Region Relationships: Evaluation by Direct and Noninvasive Methods Prog. Cardiovasc. Dis., 30(5) 323–348 (1988).PubMedCrossRefGoogle Scholar
  18. 18.
    J. M. Downey,: Why the Endocardium? In: Therapeutic Approaches to Myocardial Infarct Size Limitation, D. J. Hearse et. al. eds, Raven Press, New York, pp 17–41 (1984).Google Scholar
  19. 19.
    M. L. Cohen,: Coronary Collaterals and Luminal Communications in Experimental Animals after Recent and Chronic Coronary Occlusions: Changes in Histology and Flow in: “Coronary Collaterals: Clinical and Experimental Observations”, Futura Publishing Co., New York, pp 289–305, 307-308, 317-322 (1985)Google Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Reena Sandhu
    • 1
  • G. P. Biro
    • 1
  1. 1.Department of PhysiologyFaculty of Health Sciences University of OttawaOttawaCanada

Personalised recommendations