31P NMR Studies of the Metabolic Status of Pig Hearts Preserved for Transplantation

  • G. V. Forester
  • J. K. Saunders
  • G. W. Mainwood
  • K. W. Butler
  • J. R. Scott
  • Hilje Paradis
  • O. Z. Roy
  • Roxanne Deslauriers
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 248)


Preservation of the donor heart during transport is of paramount importance for a successful transplantation procedure [1,2]. An increase in the preservation window from the current 4 — 5 hours to over 24 hours [3,4] would lead to more compatible cross-matches and wider geographical harvest of transplantable hearts. In spite of the large amount of research on the development of solutions and modalities, there is still much to be learned to achieve optimal organ preservation. Preservation solutions have evolved from simple high-potassium buffers to complex recipes [3,4].


Nuclear Magnetic Resonance Nuclear Magnetic Resonance Spectrum Nuclear Magnetic Resonance Spectroscopy Cardioplegic Solution Procaine Hydrochloride 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    R. Hetzer, H. Warnecke, and S. Schuler, (1986) The Donor Heart: Procurement, Selection, and Preservation. TranspL Proc. 28,27–30.Google Scholar
  2. [2]
    J.M. Levett, and R.B. Karp, (1985) Heart Transplantation, Surgical Clinics of North America, 65,613–635.PubMedGoogle Scholar
  3. [3]
    J.M. Burt and J.G. Copeland, (1986) Myocardial function after preservation for 24 hours, J. Thorac. Cardiovasc. Surg., 92,238–246.PubMedGoogle Scholar
  4. [4]
    W.N. Wicomb, D. Novitzky, D.K.C. Cooper, and A.G. Rose, (1986) Forty-eight Hours Hypothermic Perfusion Storage of Pig and Baboon Hearts, J. Surg. Res., 40, 276–284.PubMedCrossRefGoogle Scholar
  5. [5]
    C.J.A. Van Echteid, and T.J.C. Ruigrok, (1987) Nuclear Magnetic Resonance Spectroscopy in Experimental Cardiology in “Non-invasive Imaging of Cardiac Metabolism” Dordrecht Martinus Nijhoff Publ., 265–277.Google Scholar
  6. [6]
    G.A. Elgavish, (1987) NMR Spectroscopy of the Intact Heart in “Biological Magnetic Resonance”, L.J. Berliner and J. Reuben, eds., Plenum Press, New York, 81–127.Google Scholar
  7. [7]
    R. Deslauriers, W.J. Keon, S. Lareau, D. Moir, J.K. Saunders, I.C.P. Smith, K. Whitehead, and G.W. Mainwood, (1989) Preservation of High Energy Phosphates in Human Myocardium — A 31P NMR Study of the Effect of Temperature on Atrial Appendages. J. Thorac. Cardiovasc. Surg., (in press)Google Scholar
  8. [8]
    G.W. Mainwood, S. Lareau, K. Whitehead, W.J. Keon, and R. Deslauriers, (1989) The Effects of Temperature and Buffer Concentration on the Metabolism of Human Atrial Appendages Measured by 31P NMR, Adv. in Exptl. Med. & Biol. — Oxygen Transport to Tissues, 12, K. Rakusan, G. Biro & T. Goldstick, eds., Plenum Press, N.Y. (in press).Google Scholar
  9. [9]
    R.J. Connett, (1988) Analysis of Metabolic Control: New Insights Using Scaled Creatine Kinase Model, Am. J. Physiol, 254, R949–R959.Google Scholar
  10. [10]
    J.R. Neely, and L.W. Grotyohann, (1984) Role of Glycolytic Products in Damage to Ischemic Myocardium, Circ. Res., 55, 816–824.PubMedGoogle Scholar
  11. [11]
    T.A. English, J. Foreman, D.G. Gadian, D.E. Pegg, D. Wheeldon, and S.R. Williams, (1988) Three Solutions for Preservation of the Rabbit Heart at 0° C, A Comparison with Phosphorus-31 Nuclear Magnetic Resonance Spectroscopy, J. Thorac. Cardiovasc. Surg., 96,54–61.PubMedGoogle Scholar
  12. [12]
    L.D. Shorr, R.T. Thompson, G.D. Marsh, F.M. Keith, A.A. Driedger, and D.J. Magilligan, Improved Preservation of Isolated Rabbit Hearts Using Oxygenated Cardioplegic Solutions. A 31P NMRS Study, (private communication).Google Scholar
  13. [13]
    H. Takami, H. Matsuda, S. Oumi, H. Watari, E. Furuya, K. Tagawa, and Y. Kawashima, (1987) Assessment of Possible Compartmentalization of Myocardial ATP and Characteristics of Depletion Under Ischemia Utilizing 31P NMR, Circulation, 76,247.Google Scholar
  14. [14]
    H. Takami, E. Furuya, K. Tagawa, Y. Seo, M. Murakami, H. Watari, H. Matsuda, H. Hirose, and Y. Kawashima, (1988) NMR-Invible ATP in Rat Heart and Its Changes in Ischemia, J. Biochem., 104,35–39.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • G. V. Forester
    • 1
  • J. K. Saunders
  • G. W. Mainwood
    • 2
  • K. W. Butler
  • J. R. Scott
  • Hilje Paradis
  • O. Z. Roy
  • Roxanne Deslauriers
  1. 1.Division of Electrical EngineeringDivision of Biological Sciences, National Research Council of CanadaOttawaCanada
  2. 2.Dept. of PhysiologySchool of Medicine, Univ. of OttawaCanada

Personalised recommendations