Advertisement

Hypoxia in Saline-Perfused Heart May be Due to Mismatch of Regional Metabolism and Perfusion

  • Johannes H. G. M. van Beek
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 248)

Abstract

A number of observations reported in the literature indicate that the average myocardial tissue oxygen tension is substantially lower than the mean coronary venous oxygen tension. Measurements with small oxygen electrodes done by Schubert et al. (1978) in the saline-perfused cat heart show that large regions have oxygen tensions far below the average venous oxygen tension. Gayeski et al. (1988) found that the saturation of myoglobin with O2 in heart and skeletal muscle indicated a PQ2 of the order of 5 mmHg. Rose et al. (1988) state that there are “two and only two explanations for these anomalies”: diffusional shunting of O2 and a high diffusional resistance for O2 between blood vessel lumen and tissue.

Keywords

Oxygen Uptake Rabbit Heart Tissue Oxygen Tension Isolate Rabbit Heart Perfusion Heterogeneity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnold, G., F. Kosche, E. Miessner, A. Neitzert, W. Lochner. The importance of the perfusion pressure in the coronary arteries for the contractility and the oxygen consumption of the heart. Pflügers Arch 299: 339–356, 1968.CrossRefGoogle Scholar
  2. van Beek, J.H.G.M., and G. Elzinga. Diffusional shunting of oxygen in saline-perfused isolated rabbit heart is negligible. Pflügers Arch. 410: 263–271, 1987.PubMedCrossRefGoogle Scholar
  3. van Beek, J.H.G.M., P. Bouma, and N. Westerhof. Oxygen uptake in saline-perfused rabbit heart is decreased to a similar extent during reductions in flow and in oxygen concentration, (submitted)Google Scholar
  4. van Beek, J.H.G.M., S.A. Roger and J.B. Bassingthwaighte. Fractal networks explain regional myocardial flow heterogeneity, (this volume)Google Scholar
  5. Bergmann, S.R, R.E. Clark, and B.E. Sobel. An improved isolated heart preparation for external assessment of myocardial metabolism. Am. J. Physiol. 236: H644–H651, 1979.PubMedGoogle Scholar
  6. Duijst, P., J.H.G.M. van Beek, G.H.M. ten Velden, G. Elzinga and N. Westerhof. Shunting of heat in the canine myocardium. In: Cardiac Metabolism and Flow. Thesis of P. Duijst, Free University Press, Amsterdam, pp. 42–87, 1988.Google Scholar
  7. Gayeski, T.E.J., W.J. Federspiel, and C.R. Honig. A graphical analysis of the influence of red cell transit time, carrier-free layer thickness, and intracellular PQ2 on blood-tissue O2 transport. Adv. Exp. Med. Biol. 222: 25–35, 1988PubMedGoogle Scholar
  8. Grote, J., and G. Thews. Die Bedingungen für die Sauerstoffversorgung des Herzmuskelgewebes. Pflügers Arch. 276: 142–165, 1962.CrossRefGoogle Scholar
  9. Katz, S.A., and E.O. Feigl. Little carbon dioxide diffusional shunting in coronary circulation. Am. J. Physiol. 253: H614–H625, 1987.PubMedGoogle Scholar
  10. Kennedy, F.G., and D.P. Jones. Oxygen dependence of mitochondrial function in isolated rat cardiac myocytes. Am. J. Physiol. 250: C374–C383, 1986.PubMedGoogle Scholar
  11. King, R.B., J.B. Bassingthwaighte, J.R.S. Hales, and L.B. Rowell. Stability of heterogeneity of myocardial blood flow in normal awake baboons. Circ. Res. 57: 285–295, 1985.PubMedGoogle Scholar
  12. Krogh, A. The number and distribution of capillaries in muscles with calculations of the oxygen pressure head necessary for supplying the tissue. J. Physiol. 52: 409–415, 1919.PubMedGoogle Scholar
  13. Kuikka, J.M. Levin, and J.B. Bassingthwaighte. Multiple tracer dilution estimates of D-and 2-deoxy-D-glucose uptake by the heart. Am. J. Physiol. 250: H29–H42, 1986.PubMedGoogle Scholar
  14. Paradise, N.F., J.M. Surmitis, and C.L. Mackall. O2 reserve of left ventricle of isolated, saline-perfused rabbit heart. Am. J. Physiol. 247: H861–H868, 1PubMedGoogle Scholar
  15. Poche, R., G. Arnold, and D. Garden. Uber den Einfluß des Perfusionsdruckes im Coronarsystem des stillgestellten, aerob perfundierten, isolierten Meerschweinchenherzens auf Stoffwechsel und Feinstruktur des Herzmuskels. Virchows Arch. (Zellpath.) 8: 252–266, 1971.Google Scholar
  16. Powers, E.P., and W.P. Powell, Jr. Effect of arterial hypoxia on myocardial oxygen consumption. Circ. Res. 33: 749–756, 1973.PubMedGoogle Scholar
  17. Rose, C.P., and CA. Goresky. Limitations of tracer oxygen uptake in the canine coronary circulation. Circ. Res. 56: 57–71, 1985.PubMedGoogle Scholar
  18. Rose C.P., C.A. Goresky, G.C Bach, J.B. Bassingthwaighte, and S. Little. In vivo comparison of non-gaseous metabolite and oxygen transport in the heart. Adv. Exp. Med. Biol. 222: 45–54, 1988.PubMedGoogle Scholar
  19. Scharf, S.M., S. Permutt, and B. Bromberger-Barnea. Effects of hypoxic and CO hypoxia on isolated hearts. J. Appl. Physiol. 39: 752–758, 1975.PubMedGoogle Scholar
  20. Schubert, R.W., W.J. Whalen, and P. Nair. Myocardial PO2 distribution: relationship to coronary autoregulation. Am. J. Physiol. 234: H361–H370, 1978.PubMedGoogle Scholar
  21. Steenbergen, C, G. Deleeuw, C Barlow, B. Chance, and J.R. Williamson. Heterogeneity of the hypoxic state in perfused rat heart. Circ. Res. 41: 606–615, 1977.PubMedGoogle Scholar
  22. Weiss, H.R., and R.S. Conway. Morphometric study of the total and perfused arteriolar and capillary network of the rabbit left ventricle. Cardiovasc. Res. 19: 343–354, 1985.PubMedCrossRefGoogle Scholar
  23. Weiss, H.R., and A.K. Sinha. Regional oxygen saturation of small arteries and veins in the canine myocardium. Circ. Res. 42: 119–126, 1978.PubMedGoogle Scholar
  24. Wittenberg, B.A., and T.F. Robinson. Oxygen requirements, morphology, cell coat and membrane permeability of calcium-tolerant myocytes from hearts of adult rats. Cell Tissue Res. 216: 231–251, 1981.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Johannes H. G. M. van Beek
    • 1
  1. 1.Laboratory for PhysiologyFree UniversityAmsterdamthe Netherlands

Personalised recommendations