Effect of Emopamil on Cerebrocortical Microcirculation During Hypoxia and Reactive Hyperemia and on [K+]e, pH, pO2 Changes During and After N2 Anoxia

  • R. Urbanics
  • A. G. B. Kovach
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 248)

Abstract

Ischemic and hypoxic changes in the central nervous system are commonly accompanied with different clinical disorders, as stroke, head injury, intracranial pressure increase, status epilepticus, etc. In the functional impairment these symptoms are very important components, often the leading symptoms and have serious impact on the final outcome of disorders.

Keywords

Ischemia Respiration Verapamil Rosen Dura 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bielenberg, G. W., Beck, T., Haubruck, H., Krieglstein, J., 1986, Effects of calcium entry blocker emopamil on postischemic energy metabolism of the isolated perfused rat brain and on local cerebral blood flow in the conscious rat. in: “Pharmacology of Cerebral Ischemia,” Krieglstein, J. ed., Amsterdam, Elsevier Science Publishers, 309–315Google Scholar
  2. Hossmann, K. A.,1982, Treatment of experimental cerebral ischemia, J. Cereb. Blood Flow Metabol. Vol. 2, 275–297.CrossRefGoogle Scholar
  3. Hossmann, K. A., Grosse Ophoff B, Schmidt-Kästner R, Oschlies U., 1985, Mitochondrial calcium sequestration in cortical and hypocampal neurons after prolonged ischemia of the cat brain. Acta Neuropath. (Berlin) Vol. 68, 230–238.CrossRefGoogle Scholar
  4. Kazda, S., Knorr, A., Towart, R., 1983, in: “Pharmacology” Vol. 5/2. (P. A. Van Zwieten and E. Schonbaum, Eds.), p. 83, Gustav Fischer Verlag, New York.Google Scholar
  5. Kovach, A. G. B., Dora, E., Sedlacsek, S., Koller, A., 1983, Effect of the organic calcium antagonist D-600 on cerebro-cortical redox responses evoked by adenosine, anoxia and epilepsy, J. Cereb. Blood Flow Metabol. Vol. 3, 51–61.CrossRefGoogle Scholar
  6. Leniger-Follert, E., Lübbers, D.W., 1977, Arzneimittelforsch. (Drug Res.) 27, 1517.Google Scholar
  7. Ligeti, L., Osbakken, M. D., Subramanian, H. V., Kovach, A. G. B., Leigh, J. S., Chance, B., 1987, Effect of emopamil on cerebral lactate and pH changes during ischemia. Magn. Re-son. Med. Vol. 4, 441–561.CrossRefGoogle Scholar
  8. Lübbers, D. W., Stosseck, K., 1970, Quantitative Bestimmung der lokalen Durchblutung durch elekrtrochemisch im Gewebe erzeugten Wasserstoff, Naturwissenschaften 57, 311–312.PubMedCrossRefGoogle Scholar
  9. Renchrona, S., Rosen, I., Siesjö, B. K., 1981, Brain lactic acidosis and ischemic cell damage: I. biochemistry and neurophysiology, J. Cereb. Blood Flow Metabol. Vol. 1, 297–311.CrossRefGoogle Scholar
  10. Siesjö, B. K., 1981, Cell damage in the brain: a speculative synthesis. J. Cereb. Blood Flow Metabol. Vol. 1, 155–185.CrossRefGoogle Scholar
  11. Somlyo, A. P., 1984, Cellular site of calcium regulation. Nature, Vol. 309, 516–517.PubMedCrossRefGoogle Scholar
  12. Somlyo, A. P., Urbanics, R., Vadasz, G., Kovach, A. G. B., Somlyo, A. V., 1985, Mitochondrial calcium and cellular electrolytes in the brain cortex frozen in situ: electron probe analysis. Biochem. Biophys. Res. Commun., Vol. 132(3): 1071–1078.PubMedCrossRefGoogle Scholar
  13. Szabo, L., Hoffmann, H. P., Raschack, M., Unger, L., 1988, (S)-emopamil: a new Ca++ antagonist of the Verapamil group with high cerebral availability and antiischemic properties. Soc. Neurosci. Abstr. 14Google Scholar
  14. Urbanics, R., Leniger-Follert, E., Lübbers, D. W., 1978, Time course of changes of extracellular H+ and K+ activities during and after direct electrical stimulation, Pflügers Arch. Vol. 378, 47–53.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • R. Urbanics
    • 1
  • A. G. B. Kovach
    • 1
  1. 1.Experimental Research Dept. and II. Institute of PhysiologySemmelweis Medical SchoolBudapestHungary

Personalised recommendations