Advertisement

The Effect of Calcium Entry Blocker S-Emopamil on Cerebrocortical Metabolism and Blood Flow Changes Evoked by Graded Hypotension

  • A. G. B. Kovách
  • L. T. Nguyen
  • L. Pék
  • L. Dezsi
  • Zs. Lohinai
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 248)

Abstract

Calcium is an extremely important intracellular electrolyte which plays a fundamental role in the regulation of many aspects of cell metabolism and activity (Somlyo, 1984; Somlyo et al., 1985; Trump et al., 1984; Siesjo, 1981; Fleckenstein, 1988; Vanhoutte et al., 1988). It has long been known that calcification of tissues is associated with cell death. Regardless of the type of injury, the loss of calcium homeostasis, leads to calcium overload, either by impaired energy metabolism or plasma membrane alterations. This elevated intracellular calcium concentration is responsible for cytoskeletal modifications, the activation of phospholipases which cause perpetuation of membrane damage and finally, mitochondrial calcification.

Keywords

Cerebral Blood Flow Arterial Blood Pressure Hemorrhagic Shock Mean Arterial Blood Pressure Calcium Entry Blocker 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bielenberg, G.W., Beck T., Sauer, D., Burniol, M., and Kriegelstein, J., 1987, Effects of cerebroprotective agents on cerebral blood flow and on postischemic energy metabolism in the rat brain, J. Cereb. Blood Flow Metabol., 7:480.CrossRefGoogle Scholar
  2. Chance, B., and Baltscheffsky, H., 1958, Respiratory enzymes in oxidative phosphorylation. VII. Binding of intramitochondrial reduced pyridine nucleotide, J. Biol. Chem., 233:736.PubMedGoogle Scholar
  3. Eke, A., Hutiray, GY., and Kovach, A.G.B., 1979, Induced hemodilution detected by reflectometry for measuring microregional blood flow and blood volume in cat brain cortex, Am. J. Physiol., 236:H75PubMedGoogle Scholar
  4. Fleckenstein, A., 1988, Historical overview. The calcium channel of the heart, Ann. N.Y. Acad. Sci., 522:1.PubMedCrossRefGoogle Scholar
  5. Harbig, K., Chance, B., Kovach, A.G.B., and Reivich, M., 1976, In vivo measurement of pyridine nucleotide fluorescence from cat brain cortex, J. Appl. Physiol., 41:480.PubMedGoogle Scholar
  6. Ivanics, T., Kovach, A.G.B., Tolgyessy, L., Nguyen, L.T., Pek, L., and Lohinai, Zs., 1988, personal communication.Google Scholar
  7. Kovach, A.G.B., 1961, Comments to Dr Levenson’s lecture in connection to nutritional and metabolic aspects of shock, Fed. Proc, 20(suppl. 9):122.Google Scholar
  8. Kovach, A.G.B., and Sandor, P., 1976, Cerebral blood flow and brain function during hypotension and shock, Annu. Rev. Physiol., 38:571.PubMedCrossRefGoogle Scholar
  9. Kovach, A.G.B., 1977, Cerebral hemodynamic and metabolic alterations in hypovolemic shock, Adv. Exp. Med. Biol., 78:343.PubMedGoogle Scholar
  10. Kovach, A.G.B., Nguyen, L.T., Tolgyessy, L., Pek, L., Ivanics, T., Ikrenyi, K., 1988, Effect of (S)-emopamil on the deterioration of cerebral bio-electrical activity evoked by standardised hemorrhagic shock, in: “Pharmacology of Cerebral Ischemia”, J. Kriegelstein, ed., Elsevier, Amsterdam, in press.Google Scholar
  11. Ligeti, L., Osbakken, M., Subramanian, H., Kovach, A.G.B., Leigh, J.S., Chance, B., 1987, 31P and 1H NMR spectroscopy to study the effects of gallopamil on brain ischemia, Magn. Reson. Med., 4:441.PubMedCrossRefGoogle Scholar
  12. Nguyen, L.T., Kovach, A.G.B., Tolgyessy, L., and Ikrenyi, K., 1988, personal communication.Google Scholar
  13. Raschak, M., Unger, L., and Szabo, L., 1988, (S)-emopamil, a brain protecting calcium antagonist of the verapamil group for the treatment of cerebrovascular disorders, in: “Pharmacology of Cerebral Ischemia”, J. Kriegelstein, ed., Elsevier, Amsterdam, in press.Google Scholar
  14. Siesjo, B.K., 1981, Cell damage in the brain: a speculative synthesis, J. Cereb. Blood Flow Metabol., 1:155.CrossRefGoogle Scholar
  15. Somlyo, A.P., 1984, Cell physiology: cellular site of calcium regulation (news), Nature, 309:516.PubMedCrossRefGoogle Scholar
  16. Somlyo, A.P., Urbanics, R., Vadasz, G., Kovach, A.G.B., and Somlyo, A.V., 1985, Mitochondrial calcium and cellular electrolytes in brain cortex frozen in situ: electron probe analysis, Biochem. Biophys. Res. Commun., 132:1071.PubMedCrossRefGoogle Scholar
  17. Szabo, L., 1988, Effect of (S)-emopamil on post-ischemic cerebral blood flow and glucose utilisation in the rat, in: “Pharmacology of Cerebral Ischemia”, J. Kriegelstein, ed., Elsevier, Amsterdam, in press.Google Scholar
  18. Trump, B.F., Berezesky, I.K., Sato, T., Laiho, K.U., Phelps, P.C., and DeClaris, N., 1984, Cell calcium, cell injury and cell death, Environ. Health Perspect., 57:281.PubMedCrossRefGoogle Scholar
  19. Vanhoutte, P.M., Paoletti, R., and Govoni, S., 1988, Calcium Antagonists, Pharmacology and Clinical Research, Ann. N.Y. Acad. Sci., 522.Google Scholar
  20. Wauquier, A., Ashton, D., and Clincke, G.H.C., 1988, Brain ischemia as a target for Ca2+ entry blockers, Ann. N.Y. Acad. Sci., 522:478.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • A. G. B. Kovách
    • 1
  • L. T. Nguyen
    • 1
  • L. Pék
    • 1
  • L. Dezsi
    • 1
  • Zs. Lohinai
    • 1
  1. 1.Experimental Research Department and 2nd Institute of PhysiologySemmelweis Medical UniversityBudapestHungary

Personalised recommendations