Tissue Oxygenation after Prolonged Ischemia in Skeletal Muscle: Therapeutic Effect of Prophylactic Isovolemic Hemodilution

  • Michael D. Menger
  • Falk-Udo Sack
  • Frithjof Hammersen
  • Konrad Messmer
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 248)

Abstract

Tissue damage in skeletal muscle caused by prolonged ischemia is due to energy failure as consequence of inadequate oxygen supply of the cells. It is well known that not only ischemia per se but particularly reperfusion of the ischemic tissue induces deterioration of the nutritive blood supply (McCord, 1985; Schmid-Schönbein, 1987). Although the manifestations of reperfusion injury after prolonged ischemia, such as impaired oxygen supply to the tissue, edema and finally tissue necrosis are well known, the mechanisms, causing microcirculatory failure during reperfusion, are still a matter of controversy.

Keywords

Permeability Catheter Ischemia Platinum Superoxide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ames, A. III, Wright, R.L., Kowada, M., Thurston, J.M., and Majno, G., 1968, Cerebral ischemia. II. The no-reflow phenomenon, Am. J. Pathol., 52:437.PubMedGoogle Scholar
  2. Arfors, K.-E., Lundberg, C., Lindbom, L., Lundberg, L., Beatty, P.G., and Harlan, J.M., 1986, A monoclonal antibody to the membrane glycoprotein complex CDw 18 (LFA), inhibits PMN accumulation and plasma leakage in vivo, Blood, 69:338.Google Scholar
  3. Arfors, K.-E., and Smedegard, G., 1987, Permeability of macromolecules as affected by inflammatory cells, Prog. appl. Microcirc., 12:90.Google Scholar
  4. Endrich, B., Asaishi, K., Götz, A., and Messmer, K., 1980, Technical report — A new chamber technique for microvascular studies in unanesthetized hamsters, Res. Exp. Med., 177:125.CrossRefGoogle Scholar
  5. Endrich, B., and Messmer, K., 1984, Quantitative analysis of the microcirculation in the awake animal, in: “Handbook of Microsurgery”, W. Olszewski, ed. CRC press, Miami.Google Scholar
  6. Darsee, J.E., and Kloner, R.A., 1980, The no-reflow phenomenon: A time-limiting factor for reperfusion after coronary occlusion? Am. J. Cardiol.. 46:800.PubMedCrossRefGoogle Scholar
  7. Del Maestro, R.F., Thaw, H., Björk, J., Planker, M., and Arfors, K.-E., 1980, Free radicals as mediators of tissue injury, Acta physiol. Scand. (Suppl.), 492:91.Google Scholar
  8. Duruble, M., Martin, J.L., and Duvelleroy, M., 1979, Effects théoriques, expérimentaux, et cliniques des variations de l’hematocrite au cours de l’hemodilution, Ann. anesthesiol. Fr., 9:805.Google Scholar
  9. Fischer, E.G., and Ames, A. III, 1972, Studies on mechanisms of impairment of cerebral circulation following ischemia: Effect of hemodilution and perfusion pressure, Stroke, 3:538.PubMedCrossRefGoogle Scholar
  10. Flores, J., DiBona, D.R., Beck, C.H., and Leaf, A., 1972, The role of cell swelling in ischemic renal damage and the protective effect of hypertonic solute, J. Clin. Invest., 51:118.PubMedCrossRefGoogle Scholar
  11. Gidlöf, A., Lewis, D.H., and Hammersen F., 1988, The effect of prolonged total ischemia on the ultrastructure of human skeletal muscle capillaries. A morphometric analysis, Int. J. Microcirc: Clin. exp., 7:67.Google Scholar
  12. Granger, D.N., Höllwarth, M.E., and Parks, D.A., 1986, Ischemia-reperfusion injury: Role of oxygen-derived free radicals, Acta physiol. Scand. (Suppl.), 548:47.Google Scholar
  13. Harman, J.W., 1948, The significance of local vascular phenomena in production of ischemic necrosis in skeletal muscle, Am. J. Pathol., 24:625.PubMedGoogle Scholar
  14. Hellberg, O., and Kallskög, Ö., 1986, Influence of hematocrit in post-ischemic kidney damage, Int. J. Microcirc: Clin. exp., 5:279.Google Scholar
  15. Hint, H., 1968, The pharmacology of dextran and the physiological background for the clinical use of rheomacrodex and macrodex, Acta anaesthesiol. Belg., 19:119.PubMedGoogle Scholar
  16. Johnston, W.H., and Latta, H., 1977, Glomerular mesangial and endothelial cell swelling following temporary renal ischemia and its role in the no-reflow phenomenon, Am. J. Pathol., 89:153.PubMedGoogle Scholar
  17. Kessler, M., and Grunewald, W.A., 1969, Possibilities of measuring oxygen pressure fields in tissue by multiwire platinum electrodes, Prog. Resp. Res., 3:147.Google Scholar
  18. Kloner, R.A., Ganote, C.E., and Jennings, R.B., 1974, The “no-reflow” phenomenon after temporary coronary occlusion in the dog, J. Clin. Invest., 54:1496.PubMedCrossRefGoogle Scholar
  19. Kovacs, K., Caroll, R., and Tapp, E., 1966, Temporary ischemia of the adrenal gland, J. Pathol. Bacteriol., 91:235.PubMedCrossRefGoogle Scholar
  20. Krug, A., du Mesnil de Rochemont, W., and Korb, G., 1966, Blood supply of the myocardium after temporary coronary occlusion, Circ. Res., 19:57.PubMedGoogle Scholar
  21. Lewis, D.H., 1984, The response of the microvasculature in skeletal muscle to hemorrhage, trauma, and ischemia, Prog. appl. Microcirc, 5:127.Google Scholar
  22. Lübbers, D.W., 1969, The meaning of the tissue oxygen distribution curve and its measurement by means of Pt electrodes, Prog. Resp. Res., 3:112.Google Scholar
  23. McCord, J.M., 1985, Oxygen-derived free radicals in postischemic tissue injury, N. Engl. J. Med., 312:159.PubMedCrossRefGoogle Scholar
  24. Menger, M.D., Sack, F.-U., Barker, J.H., Feifel, G., and Messmer, K., 1988a, Quantitative analysis of microcirculatory disorders after prolonged ischemia in skeletal muscle. Therapeutic effects of prophylactic isovolemic hemodilution, Res. Exp. Med., 188:151.CrossRefGoogle Scholar
  25. Menger, M.D., Hammersen, F., Barker, J.H., Feifel, G., and Messmer, K., 1988b, Ischemia and reperfusion in skeletal muscle, Prog. appl. Microcirc., 13:in press.Google Scholar
  26. Messmer, K., Brendel, W., Sunder-Plassmann, L., and Holper, K., 1969, The use of colloidal solutions for extreme hemodilution, Bibl. haematol., 33:261.PubMedGoogle Scholar
  27. Messmer, K., Sunder-Plassmann, L., Jesch, F., Görnandt, L., Sinagowitz, E., and Kessler, M., 1973, Oxygen supply to the tissues after limited normovolemic hemodilution, Res. Exp. Med., 159:152.CrossRefGoogle Scholar
  28. Messmer, K., Sunder-Plassmann, L., v. Hessler, F., and Endrich, B., 1982, Hemodilution in peripheral occlusive disease: A hemorheo-logical approach, Clinical Hemorheology, 2:721.Google Scholar
  29. Mirashemi, S., Ertefai, S., Messmer, K., and Intaglietta, M., 1987, Model analysis of the enhancement of tissue oxygenation by hemodilution due to increased microvascular flow velocity, Microvasc. Res., 34:290.CrossRefGoogle Scholar
  30. Parks, D.A., Bulkley, G.B., Granger, D.N., Hamilton, S.R., and McCord, J.M., 1982, Ischemic injury in the cat small intestine: Role of superoxide radicals, Gastroenterology, 82:9.PubMedGoogle Scholar
  31. Poche, R., Arnold, G., and Nier, H., 1969, Die Ultrastruktur der Muskelzellen und der Blutkapillaren des isolierten Rattenherzens nach diffuser Ischämie und Hyperkapnie, Virchows Arch. (Pathol. Anat.), 346:249.Google Scholar
  32. Romanus, M., Stenqvist, O., Haljamäe H.,O and Seifert, F., 1977, Pressure-induced ischemia. I. An experimental model for intravital microscopic studies in hamster cheek pouch, Eur. Surg. Res., 9:444.PubMedCrossRefGoogle Scholar
  33. Sack, F.-U., Funk, W., Hammersen, F., and Messmer, K., 1987, Microvascular injury of skeletal muscle and skin after different periods of pressure induced ischemia, Prog. appl. Microcirc., 12:282.Google Scholar
  34. Schmid-Schönbein, G.W., 1987, Capillary plugging by granulocytes and the no-reflow phenomenon in the microcirculation, Fed. Proc., 7:2397.Google Scholar
  35. Schmid-Schönbein, H., and Rieger, H., 1981, Why hemodilution in low flow states? Bibl. haematol., 47:99.PubMedGoogle Scholar
  36. Strock, P.E., and Majno, G., 1969, Microvascular changes in acutely ischemic rat muscle, Surg. Gynecol. Obstet., 129:1213.PubMedGoogle Scholar
  37. Stucker, O., Trouve, R., Vicaut, E., Charansonney, O., Teisseire, B., Duruble, M., and Duvelleroy, M., 1983, Effects of different hematocrits on the isolated working rabbit heart reperfused after ischemia, Int. J. Microcirc: Clin. exp., 2:235.Google Scholar
  38. Sunder-Plassmann, L., Kessler, M., Jesch, F., Dieterle, R., and Messmer, K., 1975, Acute normovolemic hemodilution changes in tissue oxygen supply and hemodilution oxygen affinity, Bibl. haematol., 41:44.PubMedGoogle Scholar
  39. Sunder-Plassmann, L., von Hesler, F., Endrich, B., and Messmer, K., 1981, Improvement of collateral circulation in chronic vascular occlusive disease of the lower extremity, Bibl. haematol., 47:43.PubMedCrossRefGoogle Scholar
  40. Suval, W.D., Duran, W.N., Boric, M.P., Hobson, R.W. II, Berendsen, P.B., and Ritter, A.B., 1987, Microvascular transport and endothelial cell alterations preceding skeletal muscle damage in ischemia and reperfusion injury, Am. J. Surg., 154:211.PubMedCrossRefGoogle Scholar
  41. Vedder, N.B., Winn, R.K., Rice, C.L., Chi, E.Y., Arfors, K.-E., and Harlan, J.M., 1988, A monoclonal antibody to the adherence-promoting leukocyte glycoprotein, CD 18, reduces organ injury and improves survival from hemorrhagic shock and resuscitation in rabbits, J. Clin. Invest., 81:939.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Michael D. Menger
    • 1
  • Falk-Udo Sack
    • 2
  • Frithjof Hammersen
    • 3
  • Konrad Messmer
    • 2
  1. 1.Dept. of General SurgeryUniversity of SaarlandHomburg, SaarGermany
  2. 2.Dept. of Experimental SurgeryUniversity of HeidelbergHeidelbergGermany
  3. 3.Dept. of AnatomyUniversity of MunichMunichGermany

Personalised recommendations