Adenosine Deaminase in Stroma-Free Hemoglobin Solution is Not Responsible for Coronary Vasoconstriction

  • K. Lawless
  • P. J. Anderson
  • G. P. Biro
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 248)


One of us (Biro, 1982), using an unmodified preparation of stroma-free hemoglobin solution (SFHS) to hemodilute dogs, observed that coronary blood flow was inadequate to maintain normal coronary sinus pO2. In view of the likely involvement of adenosine in flow autoregulation of the coronary circulation (Berne, 1980) and of the presence of significant concentrations of adenosine deaminase (ADA) in human red blood cells (Lerner et al., 1970), the suggestion was made (Biro, 1982) that ADA activity in SFHS may have interfered with endogenous adenosine and thereby prevented adequate coronary vasodilation.


Perfusion Pressure Coronary Blood Flow Adenosine Deaminase Coronary Perfusion Pressure Coronary Vasoconstriction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Berne, R. M., 1980, The role of adenosine in the regulation of coronary blood flow, Circ. Res.. 47(6):807.PubMedGoogle Scholar
  2. Biro, G. P., 1982, Comparison of acute cardiovascular effects and oxygen supply following haemodilution with dextran, stroma-free haemoglobin solution and fluorocarbon suspension, Cardiovasc. Res.. 16: 194.PubMedCrossRefGoogle Scholar
  3. Biro, G. P., 1988, Blood substitutes and the cardiovascular system, Biomat.. Art. Cells. Art.-Org.. 16:595.Google Scholar
  4. Biro, G. P., Taichman, G. C., Lada, B., Keon, W. J., Rosen, A. L., and Sehgal, L. R., 1988, Coronary vascular actions of stroma-free hemoglobin preparations, Artif. Organs. 12:40.PubMedCrossRefGoogle Scholar
  5. Cheung, S., T., McIlhany, M., P., Lim, R., and Mullan, S., 1980, Preliminary characterization of vasocontractive activities in erythrocytes J. Neurosurg., 53:37.PubMedCrossRefGoogle Scholar
  6. DeVenuto, F., Moores, W., Y., Zegna, A., I., and Zuck, T., F., 1977, Total and partial blood exchange in the rat with hemoglobin prepared by crystallization, Transfusion. 17:555.PubMedCrossRefGoogle Scholar
  7. Dcle W. D., Yamada, N., Bishop, V. S., and Olsson, R. A., 1985, Role of adenosine in coronary blood flow regulation after reductions in perfusion pressure, Circ. Res.. 56:517.Google Scholar
  8. Evelyn, K., A., and Malloy, H., T., 1938, Microdetermination of oxhemoglobin, methemoglobin, and sulfhemoglobin in single sample blood, J. Biol. Chem.. 126:655.Google Scholar
  9. Fujiwara, S., Kassell, N. F., Sasaki, T., Nakagomi, T., and Lehman, R. M., 1986, Selective hemoglobin inhibition of endothelium-dependent vasodilation of rabbit basilar artery, J, Neurosurg.. 64:445.CrossRefGoogle Scholar
  10. Furchgott, R. F., 1984, The role of endothelium in the responses of vascular smooth muscle to drugs, Ann. Rev. Pharmacol. Toxicol.. 24:175CrossRefGoogle Scholar
  11. Hopkinson, D., A., Cook, P., J., L., and Harris, H., 1969, Further data on the adenosine deaminase (ADA) polymorphism and a report of a new phenotype, Ann. Hum. Genet.. 32:361.PubMedCrossRefGoogle Scholar
  12. Lerner, M., H., and Rubenstein, D., 1970, The role of adenine and adenosine as precursors for adenine nucleotide synthesis by fresh and preserved human erythrocytes, Biochim. Biophys. Acta. 224:301.PubMedGoogle Scholar
  13. Martin, W., Villani, G. M., Jothianandan, D., and Furchgott, 1985, Blockade of endothelium-dependant and glyceryl trinitrate-induced relaxation of rabbit aorta by certain ferrous hemoproteins, J. Pharmacol. Exp. Ther.. 233(3):679.PubMedGoogle Scholar
  14. Martin, M., Smith, J. A., and White, D. G., 1986, The mechanisms by which haemoglobin inhibits the relaxation of rabbit aorta induced by nitrovasodilators, nitric oxide, or bovine retractor penis inhibitory factor, Br. J. Pharmac.. 89:563.Google Scholar
  15. Okwuasaba, F., Cook, D., and Weir, B., 1981, Changes in vasoactive properties of blood products with time and attempted identification of the spasmogens, Stroke. 12:775.PubMedCrossRefGoogle Scholar
  16. Saito, D., Steinhart, C. R., Nixon, D. G., and Olsson, R. A., 1981, Intracoronary adenosine deaminase reduces canine myocardial reactive hyperemia, Circ. Res.. 49:1262.PubMedGoogle Scholar
  17. Sehgal, L. R., Rosen, A. L., Gould, S. A., Sehgal, H. L., and Moss, G. S., 1983, Preparation and in vitro characteristics of polymerized pyridoxylated hemoglobin, Transfusion. 23:158.PubMedCrossRefGoogle Scholar
  18. Tanishima, T., 1980, Cerebral vasospasm: Contractile activity of hemoglobin in isolated canine basilar arteries, J. Neurosurg. 53:787.PubMedCrossRefGoogle Scholar
  19. Toda, N., Shimuzu, K., and Ohta, T., 1980, Mechanism of cerebral arterial contraction induced by blood constituents, J. Neurosurg., 53:312.PubMedCrossRefGoogle Scholar
  20. Vanhoutte, P. M., Rubanyi, G. M., Miller, V. M., and Houston, D.S., 1986, Modulation of vascular smooth muscle contraction by the endothelium, Ann. Rev. Physiol.. 48:307.CrossRefGoogle Scholar
  21. Vogel W. M., Dennis, R. C., Cassidy, G., Apstein, C. S., and Valeri, C. R., 1986, Coronary constrictor effect of stroma-free hemoglobin solutions, Am. J. Physiol.. 251:H413.PubMedGoogle Scholar
  22. Wellum G., R., Irvine, T., W. jr, and Zervas, N., T., 1980, Dose response of cerebral arteries of the dog, rabbit, and man to human hemoglobin, J. Neurosurg.. 53:486.PubMedCrossRefGoogle Scholar
  23. Wellum G. R., Irvine, T. W., and Zervas, N. T., 1982, Cerebral vasoactivity of heme proteins in vitro, J. Neurosurg., 56:777.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • K. Lawless
    • 1
  • P. J. Anderson
    • 1
  • G. P. Biro
    • 1
  1. 1.Departments of Biochemistry and PhysiologyUniversity of OttawaOttawaCanada

Personalised recommendations