Computer Simulation of Cerebral Microhemodynamics

  • Antal G. Hudetz
  • James G. Spaulding
  • Mohammad F. Kiani
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 248)

Abstract

Microvascular path length and transit time are important factors which influence the extraction of oxygen from red blood cells in cerebral tissue. The direct measurement of these variables is hindered by the difficulty in observing the deep cortical capillary circulation in a noninvasive manner (Pawlik et al, 1981). An alternative approach to estimate microvascular path lengths and transit times is to simulate the red cell flow distribution in the microvessel networks by computer.

Keywords

Formalin Depression Epoxy Propylene Heparin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cokelet, G., 1976, Blood rheology interpreted through the flow properties of the red cell. Microcirculation, 1:9.Google Scholar
  2. Duvernoy, H. M., Delon, S., and Vannson, J. L., 1981, Cortical blood vessels of the human brain, Brain Res. Bull., 7:519.PubMedCrossRefGoogle Scholar
  3. Dellimore, J.W.; Dunlop, M.J.; and Canham P.B., 1983, Ratio of Cells and Plasma in Blood Flowing Past Branches in Small Plastic Channels. Am. J. Physiol., 244:H635.PubMedGoogle Scholar
  4. Haynes, R.H., 1960, Physical basis of the dependence of blood viscosity on tube radius. Am. J. Physiol., 198:1193.PubMedGoogle Scholar
  5. Jay, A.; Rowlands, S. and Skibo, L., 1972, The resistance to blood flow in the capillaries. Canad. J. Phys. Phar., 50:1007.CrossRefGoogle Scholar
  6. Klitzman, B., and Johnson, P.C., 1982, Capillary network geometry and red cell distribution in hamster creamaster muscle. Am. J. Physiol., 242:H211.PubMedGoogle Scholar
  7. Motti, E. D. F., Imhof, H.-G., and Yasargil, M. G., 1986, The terminal vascular bed in the superficial cortex of the rat, J. Neurosurg., 65:834.PubMedCrossRefGoogle Scholar
  8. Papenfuss H.-D., and Gross, J. F., 1981, Microhemodynamics of capillary networks, Biorheology, 18:673.PubMedGoogle Scholar
  9. Pawlik, G., Rakl, A., and Bing, R.J., 1981, Quantitative capillary topography and blood flow in the cerebral cortex of cats: an in vivo microscopic study, Brain Res., 208:35.PubMedCrossRefGoogle Scholar
  10. Reinke, W.; Johnson, P.C. and Gaehtgens, P., 1986, Effect of shear rate variation on apparent viscosity of human blood in tubes of 29 to 94 urn diameter. Circulation Res., 59:124.PubMedGoogle Scholar
  11. Tomita, M., Gotoh, F., Amano, T., Tanahashi, N., Kobari, M., Shinohara, T., and Mihara, B., 1983, Transfer function through regional cerebral cortex evaluated by photoelectric method. Am. J. Physiol., 245:H385.PubMedGoogle Scholar
  12. Whitmore, R.L., 1967, A theory of blood flow in small vessels. J. Appl. Physiol., 22:767.PubMedGoogle Scholar
  13. Wiederhold, K.-H., Bielser, W., Schultz, U., Jr., Veteau, M.-J., and Hunziker, O., 1976, Three dimensional reconstruction of brain capillaries from frozen serial sections, Microvasc. Res., 11:175.PubMedCrossRefGoogle Scholar
  14. Yamakawa, T., Niimi, H., Sugiayama, I., and Yamaguchi, S., 1986, Red blood cell flow distribution and capillary hematocrit in the cerebral cortex microcirculation of cat: intravital microscopic study, Proc. IUPS., 16:222.Google Scholar
  15. Yoshida, Y. and Fusahiro I., 1984, Three-dimensional architecture of cerebral microvessels with a scanning electron microscope: a cerebrovascular casting method for fetal and adult rats. J. Cereb. Blood Flow Metabol. 4:290.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Antal G. Hudetz
    • 1
  • James G. Spaulding
    • 1
  • Mohammad F. Kiani
    • 2
  1. 1.Departments of Biomedical Engineering and ZoologyLouisiana Tech UniversityRustonUSA
  2. 2.Experimental Research DepartmentSemmelweis Medical UniversityBudapestHungary

Personalised recommendations