Skip to main content

Calculation of Oxygen Pressures and Fluxes in a Flat Plane Perpendicular to Any Capillary Distribution

  • Chapter
Book cover Oxygen Transport to Tissue XI

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 248))

Abstract

Most modelling of oxygen transport in tissue has been based on the classical Krogh-Erlang equation (Krogh, 1919), which describes oxygen diffusion in any circular cross-section of a spherical cylinder around a capillary. Extensions like facilitated diffusion and non-zero-order oxygen consumption can be built in and combined with blood flow and capillary spacing heterogeneity (Turek et al., this volume). Other models are based on computer simulations (Federspiel, 1986; Popel et al., 1986; Groebe, 1987), with the disadvantage of describing only specific situations; thus making application in real heterogeneous tissue impossible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Clark, P.A., Kennedy, S.P., Clark Jr., A.C., Buffering of muscle Po2 levels by the superposition of the oxygen field from many capillaries, this volume.

    Google Scholar 

  • De Koning, J., Hoofd, L.J.C., Kreuzer, F., 1981, Oxygen transport and the function of myoglobin: theoretical model and experiments in chicken gizzard smooth muscle, Pflügers Arch., 389: 211–217.

    Article  PubMed  Google Scholar 

  • Federspiel, W.J., 1986, A model study of intgracellular oxygen gradients in a myoglobin-containing skeletal muscle fiber, Biophys. J., 49: 857–868.

    Article  PubMed  CAS  Google Scholar 

  • Gayeski, T.E.J., 1982, “A cryogenic microspectrophotometric method for measuring myoglobin saturation in subcellular volumes: Application to resting dog gracilis muscle”, Dissertation Thesis, University of Rochester, Rochester, NY, USA.

    Google Scholar 

  • Groebe, K., 1987, “Theoretische Untersuchung des Sauerstofftransportes in der Skeletmuskulatur bei maximaler Sauerstoffaufnähme”, Dissertation Thesis, University of Mainz, Mainz, FRG.

    Google Scholar 

  • Honig, C.R., Gayeski, T.E.J., 1987, Comparison of intracellular Po2 and conditions for blood-tissue O2 transport in heart and working red skeletal muscle, in: “Oxygen Transport to Tissue IX (Adv. Exp. Med. Biol. 215),” I. A. Silver and A. Silver, eds., Plenum Press, New York & London, pp. 309–321.

    Google Scholar 

  • Hoofd, L., 1987, “Facilitated diffusion of oxygen in tissue and model systems”, Dissertation Thesis, University of Nijmegen, Nijmegen, the Netherlands.

    Google Scholar 

  • Hoofd, L., Turek, Z., Kubat, K., Ringnalda, B.E.M., Kazda, S., 1985, Variability of intercapillary distance estimated on histological sections of rat heart, in: “Oxygen Transport to Tissue VII (Adv. Exp. Med. Biol. 191),” F. Kreuzer, S. M. Cain, Z. Turek and T. K. Goldstick, eds., Plenum Press, New York & London, pp. 239–247.

    Google Scholar 

  • Hoofd, L., Turek, Z., Rakusan, K., 1987, Diffusion pathways in oxygen supply of cardiac muscle, in: “Oxygen Transport to Tissue IX (Adv. Exp. Med. Biol. 215),” I. A. Silver and A. Silver, eds., Plenum Press, New York & London, pp. 171–177.

    Google Scholar 

  • Krogh, A., 1919, The number and distribution of capillaries in muscles with calculations of the oxygen pressure head necessary for supplying the tissue. J. Physiol., 52: 409–415.

    PubMed  CAS  Google Scholar 

  • Popel, A.S., Charny, C.K., Dvinsky, A.S., 1986, Effect of heterogeneous oxygen delivery on the oxygen distribution in skeletal muscle, Math. Biosci. 81: 91–113.

    Article  Google Scholar 

  • Rakusan, K., Hoofd, L., Turek, Z. 1984, The effect of cell size and capillary spacing on myocardial oxygen supply, in: “Oxygen Transport to Tissue VI (Adv. Exp. Med. Biol. 180).” D. Bruley, H. I. Bicher and D. Reneau, eds., Plenum Press, New York & London, pp. 463–477.

    Google Scholar 

  • Turek, Z., Olders, J., Hoofd, L., Egginton, S., Kreuzer, F., Rakusan, K., PO2 histograms in various models of tissue oxygenation in skeletal muscle, this volume.

    Google Scholar 

  • Turek, Z., Rakusan, K., 1981, Lognormal distribution of intercapillary distance in normal and hypertrophic rat heart as estimated by the method of concentric circles: its effect on tissue oxygenation, Pflü-gers Arch., 391: 17–21.

    Article  CAS  Google Scholar 

  • Van Haelst, A.C.T.A., Hoofd, L., Turek, Z., 1985, Lognormal distribution of capillary domains in the rat myocardium. J. Physiol. (London), 366: 114P.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Plenum Press, New York

About this chapter

Cite this chapter

Hoofd, L., Turek, Z., Olders, J. (1989). Calculation of Oxygen Pressures and Fluxes in a Flat Plane Perpendicular to Any Capillary Distribution. In: Rakusan, K., Biro, G.P., Goldstick, T.K., Turek, Z. (eds) Oxygen Transport to Tissue XI. Advances in Experimental Medicine and Biology, vol 248. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5643-1_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5643-1_23

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5645-5

  • Online ISBN: 978-1-4684-5643-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics