Skip to main content

Effects of Red Cell Spacing and Red Cell Movement Upon Oxygen Release Under Conditions of Maximally Working Skeletal Muscle

  • Chapter
Oxygen Transport to Tissue XI

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 248))

Abstract

The impacts of the particulate nature of blood upon capillary O 2 release have been studied extensively by Federspiel and Sarelius [8] and by Federspiel and Popel [9]. The latter authors found that the O 2 flux out of a capillary decreases rapidly as intracapillary red blood cell spacing increases. The O 2 flux out of a single RBC, however, is enhanced as long as the inter-erythrocytic plasma gap does not exceed the “zone-of-influence” of a single RBC, which they determined to be about 1 capillary diameter. In their model, they considered spherical red cells contained in a cylindrical tube filled with plasma, on the lateral surface of which a boundary Po 2 was specified. Based on earlier studies by Aroesty and Gross [2], they neglected the contribution of intracapillary convection of plasma on O 2 transport. By restricting their view to the capillary interior, they disregarded the interactions between moving RBCs inside the capillary on the one hand and the stationary capillary wall and surrounding tissue on the other. This interaction may be characterized by “charging” and “discharging” of the stationary structures with oxygen as an RBC or a plasma gap, respectively, passes by. The importance of this interaction is being addressed in the present study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P.L. Altman, D.S. Dittmer, “Biology Data Book”, Federation of American Societies for Experimental Biology, Bethesda, 1972

    Google Scholar 

  2. J. Aroesty, J.F. Gross, Convection and diffusion in the microcirculation, Microvasc.Res. 2:247 (1970)

    Article  PubMed  CAS  Google Scholar 

  3. P. Brodal, F. Ingjer, L. Hermansen, Capillary supply of skeletal muscle fibers in untrained and endurancetrained men, Am. J.Physiol. 232:H705 (1977)

    PubMed  CAS  Google Scholar 

  4. D.F. Bruley, L.J. Groome, H. Bicher, M.H. Knisely, A stochastic model for the transport of oxygen to brain tissue, Adv.Exp.Med.Biol. 75:267–277 (1976)

    PubMed  CAS  Google Scholar 

  5. A. Clark, JR., C.R. Cokelet, W.J. Federspiel, Erythrocyte motion and oxygen transport, Bibl.Anat. 20:385 (1981)

    Google Scholar 

  6. A. Clark, W.J. Federspiel, P.A.A. Clark, C.R. Cokelet, Oxygen delivery from red cells, Biophys. J. 47:171 (1985)

    Article  PubMed  Google Scholar 

  7. E. Eriksson, M. Myrhage, Microvascular dimensions and blood flow in skeletal muscle, Acta Physiol.Scand. 86:211 (1972)

    Article  PubMed  CAS  Google Scholar 

  8. W.J. Federspiel, L.H. Sarelius, An examination of the contribution of red cell spacing to the uniformity of oxygen flux at the capillary wall, Microvasc. Res. 27:273 (1984)

    Article  PubMed  CAS  Google Scholar 

  9. W.J. Federspiel, A.S. Popel, A theoretical analysis of the effect of the particulate nature of blood on oxygen release in capillaries, Microvasc. Res. 32:164 (1986)

    Article  PubMed  CAS  Google Scholar 

  10. K. Fronek, B.W. Zweifach, Microvascular blood flow in cat tenuissimus muscle, Microvasc. Res. 14:181 (1977)

    Article  PubMed  CAS  Google Scholar 

  11. T.E.J. Gayeski, C.R. Honig, O 2 gradients from sarcolemma to cell interior in red muscle at maximal Vb 2, Am. J.Physiol. 251:H789 (1986)

    PubMed  CAS  Google Scholar 

  12. T.E.J. Gayeski, R.J. Connett, C.R. Honig, Minimum intracellular P O2 for maximum cytochrome turnover in red muscle in situ, Am. J.Physiol. 252:H906 (1987)

    PubMed  CAS  Google Scholar 

  13. T.K. Goldstick, V.T. Ciuryla, L. Zuckerman, Diffusion of oxygen in plasma and blood, Adv.Exp.Med.Biol. 75:183 (1975)

    Google Scholar 

  14. K. Groebe, G. Thews, Theoretical analysis of oxygen supply to contracted skeletal muscle, Adv.Exp.Med.Biol. 200:495 (1986)

    PubMed  CAS  Google Scholar 

  15. C.R. Honig, T.E.J. Gayeski, Precapillary O 2 loss and arteriovenous O 2 diffusion shunt are below limit of detection in myocardium, Adv.Exp.Med.Biol. (Oxygen Transport to Tissue XI), in press

    Google Scholar 

  16. C.R. Honig, T.E.J. Gayeski, W. Federspiel, A. Clark, P. Clark, Muscle O 2 gradients from hemoglobin to cytochrome: new concepts, new complexities, Adv.Exp.Med.Biol. 169:23 (1984)

    PubMed  CAS  Google Scholar 

  17. W. Moll, The influence of hemoglobin diffusion on oxygen uptake and release by red cells, Respir.PhysioL 6:1 (1968/69)

    Article  PubMed  CAS  Google Scholar 

  18. G. Thews, “Der Atemgastransport bei körperlicher Arbeit, Funktionsanalyse biologischer Systeme, Bd. 10”, Akademie der Wissenschaften und der Literatur, Mainz, 1984

    Google Scholar 

  19. G. Thews, W. Niesel Zur Theorie der Sauerstoffdiffusion im Erythrocyten, Pflügers Arch. 268:318–333 (1959)

    Article  PubMed  CAS  Google Scholar 

  20. P. Vaupel, Effect of percentual water content in tissues and liquids on the diffusion coefficients of O 2, CO 2, N 2, and H 2, Pflügers Arch. 361:201 (1976)

    Article  PubMed  CAS  Google Scholar 

  21. G.H. Whipple, The hemoglobin of striated muscle. I. Variations due to age and exercise, Am. J.Physiol. 76:693–707 (1926)

    Google Scholar 

  22. M. W. Wintrobe, G. R. Lee, D. R. Boggs, T. C. Bithells, J. Foerster, J. W. Athens, J. N. Lukens, Clinical Hematology, Lea & Febiger, Philadelphia, 1981

    Google Scholar 

  23. R. Zander, Cellular oxygen concentration, Adv.Exp.Med.Biol. 75:463 (1975)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Plenum Press, New York

About this chapter

Cite this chapter

Groebe, K., Thews, G. (1989). Effects of Red Cell Spacing and Red Cell Movement Upon Oxygen Release Under Conditions of Maximally Working Skeletal Muscle. In: Rakusan, K., Biro, G.P., Goldstick, T.K., Turek, Z. (eds) Oxygen Transport to Tissue XI. Advances in Experimental Medicine and Biology, vol 248. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5643-1_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5643-1_22

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5645-5

  • Online ISBN: 978-1-4684-5643-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics