Skip to main content

A Model for Bidirectional Transduction in Outer Hair Cells

  • Chapter
Cochlear Mechanisms: Structure, Function, and Models

Part of the book series: NATO ASI Series ((NSSA))

  • 150 Accesses

Abstract

There is considerable evidence for the existence of a cochlear amplifier which serves to increase the sensitivity and frequency selectivity of the cochlea to low intensity sounds (Davis, 19S3). Earlier models of traveling-wave amplification in the cochlea used negative damping components to supply the additional energy used to power the cochlear amplifier (Kim, et al., 1980; de Boer, 1983; Koshigoe and Tubis, 1983). The negative damping models are now being replaced by more realistic feedback force models in which the fast motile response of the outer hair cell is implicated as the driving force for the cochlear amplifier (Geisler, 1986; Zwicker, 1986; Neely and Kim, 1987).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen, J.B. (1980). Cochlear micromechanics — A physical model of transduction. J. Acoust. Soc. Am. 68, 1660–1679.

    Article  PubMed  CAS  Google Scholar 

  • Ashmore, J.F. (1987). A fast motile response in guinea-pig outer hair cells: The cellular basis of the cochlear amplifier. J. Physiol. 388, 323–347.

    PubMed  CAS  Google Scholar 

  • Ashmore, J.F. (1988). What is the stimulus for outer hair cell motility? In: Basic Issues in Hearing (Eds: Duifhuis, H., Hoorst, J.W., and Wit H.P.), Academic Press, London,.

    Google Scholar 

  • de Boer, E. (1983). No Sharpening? A challenge for cochlear mechanics. J. Acoust. Soc. Am. 73, 567–573.

    Article  PubMed  Google Scholar 

  • Desmedt, J.E. and Robertson, D. (1975). Ionic mechanism of the efferent olivo-cochlear inhibition studied by perfusion in the cat. J. Physiol. 247, 407–428.

    PubMed  CAS  Google Scholar 

  • Brownell, W.E., Bader, C.E., Bertrand, D., and de Ribaupierre, Y. (1985). Evoked mechanical responses of isolated cochlear outer hair cells. Science 227, 194–196.

    Article  PubMed  CAS  Google Scholar 

  • Brownell, W.E., and Kachar, B. Outer hair cell motility: A possible electro-kinetic mechanism. In: Peripheral Auditory Mechanisms (Eds: Allen, J.B., Hall, J.L., Hubbard, A., Neely, S.T., and Tubis, A.) Springer-Verlag, Munich, pp.369-376.

    Google Scholar 

  • Davis, H. (1983). An active process in cochlear mechanics, Hearing Res. 9, 1–49.

    Article  Google Scholar 

  • Geisler, C.D. (1986). A model of the effect of outer hair cell motility on cochlear vibrations. Hearing Res. 24, 125–132.

    Article  CAS  Google Scholar 

  • Gitter, A.H., and Zenner, H-P. (1988). Auditory transduction steps in single inner and outer hair cells. In: Basic Issues in Hearing (Eds: Duifhuis, H., Hoorst, J.W., and Wit H.P.), Academic Press, London.

    Google Scholar 

  • Hudspcth, A.J., and Corey, D.P. (1977). Sensitivity, polarity, and conductance change in the response of vertebrate hair cells to controlled mechanical stimuli. Proceedings of the National Academy of Science, (USA) 74, 2407–2411.

    Article  Google Scholar 

  • Kiang, N.Y.S., and Moxon, E.C. (1972). Physiological considerations in artificial stimulation of the inner ear. Ann. Otol. Rhinol. Laryngol. 81, 714–730.

    PubMed  CAS  Google Scholar 

  • Kim, D.O., Neely, S.T., Molnar, C.E., and Matthews, J.W. (1980). An active cochlear model with negative damping in the cochlear partition: Comparison with Rhode’s ante-and post-mortem results. In: Psychological, Physiological and Behavioral Studies in Hearing (Eds: van den Brink, G., and Bilsen, F.A.), University Press, Delft, The Netherlands, pp. 7–14.

    Chapter  Google Scholar 

  • Koshigoe, S. and Tubis, A. (1983). Frequency-domain investigations of cochlear stability in the presence of active elements. J. Acoust. Soc. Am. 73, 1244–1248.

    Article  PubMed  CAS  Google Scholar 

  • Mott, J.B., Norton, S.J., Neely, S.T., and Warr, S.T. (1988). Changes in spontaneous otoacoustic emissions produced by acoustic stimulation of the contralateral ear. (In preparation.).

    Google Scholar 

  • Neely, S.T. (1988). Transient responses in an active, nonlinear model of cochlear mechanics. In: Basic Issues in Hearing (Eds: Duifhuis, H., Hoorst, J.W., and Wit H.P.), Academic Press, London.

    Google Scholar 

  • Neely, S.T., and Kim, D.O. (1987) A model for active elements in cochlear biomechanics. J. Acoust. Soc. Am. 79, 1472–1480.

    Article  Google Scholar 

  • Warr, W.B. and Guinan, J.J. (1979). Efferent innervation of the organ of Corti: two separate systems. Brain Res. 173, 152–155.

    Article  PubMed  CAS  Google Scholar 

  • Weiss, T.F. (1982). Bidirectional transduction in vertebrate hair cells: A mechanism for coupling mechanical and electrical processes. Hearing Res. 7, 353–360.

    Article  CAS  Google Scholar 

  • Zwicker, E. (1986). A hardware cochlear nonlinear preprocessing model with active feedback. J. Acoust. 80, 146–153.

    Article  CAS  Google Scholar 

  • Whitehead, M.L., Wilson, J.P. and Baker, R.J. (1986). The effects of temperature on otoacoustic emission tuning properties. In: Auditory Frequency Selectivity (Eds. Moore, B.C.J. and Patterson, R.D.), Plenum, New York, pp 39–46.

    Google Scholar 

  • Sutton, G.J. and Wilson, J.P. (1983) Modelling cochlear echoes: the influence of irregularities in frequency mapping on summed cochlear activity. In: Mechanics of Hearing, Eds: E. de Boer and M.A. Viergever, Delft Univ. Press, Delft, pp. 83–90.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Plenum Press, New York

About this chapter

Cite this chapter

Neely, S.T. (1989). A Model for Bidirectional Transduction in Outer Hair Cells. In: Wilson, J.P., Kemp, D.T. (eds) Cochlear Mechanisms: Structure, Function, and Models. NATO ASI Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5640-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5640-0_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5642-4

  • Online ISBN: 978-1-4684-5640-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics