Is Basilar Membrane Tuning the Same as Neural Tuning -- Where Do We Stand?

  • Jont B. Allen
Part of the NATO ASI Series book series (NSSA)


One of the most important problems which still remains unsolved in cochlear theory is explaining the sharpness of tuning of the neurally measured response in the base of the cochlea. To solve this problem we must answer the following questions


Hair Cell Auditory Nerve Outer Hair Cell Basilar Membrane Tuning Curve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen, J. B. (1980a). “Cochlear micromechanics — A physical model of transduction,” J. Acoust. Soc. Am. 68, 1660–1670.PubMedCrossRefGoogle Scholar
  2. Allen, J. B. (1980b). “A Cochlear Micromechanic Model of Transduction,” in Psychophysical Physiological and Behavioural Studies in Hearing, Ed. by G. Van den Brink, and F. A. Bilsen, Delft University Press, 85–93.CrossRefGoogle Scholar
  3. Allen, J. B., and Fahey, P. F. (1983). “Nonlinear Behavior at Threshold Determined in the Auditory Canal and on the Auditory Nerve,” In Hearing-Physiological Bases and Psychophysics, Ed. by R. Klinke and R. Hartmann, Springer-Verlag, New York, pp. 128–133.Google Scholar
  4. Allen, J. B. (1983). “Magnitude and phase frequency response to single tone in the auditory nerve,” J. Acoust. Soc. Am. 73, 2071–2092.PubMedCrossRefGoogle Scholar
  5. Allen, J. B. (1985). “Cochlear Modeling,” IEEE ASSP Magasine 2, #1, January, 3–29.CrossRefGoogle Scholar
  6. Brownell, W.E., Bader, C. R., Bertrand, D., and de Ribaupierre, Y. (1985). “Evoked Mechanical Responses of Isolated Cochlear Outer Hair Cells,” Science 227, 194–196.PubMedCrossRefGoogle Scholar
  7. Constalupes, J.A., Rich, N.C., and Ruggero, M.A. (1987). “Effects of excitatory and non-excitatory suppressor tones on two-tone rate suppression in auditory nerve fibers,” Hearing Research, 26, 155–164.CrossRefGoogle Scholar
  8. Delgutte, B. (1986). Ninth ARO Midwinter Meeting, Abstract p. 65.Google Scholar
  9. Davis, H. (1983). “An Active process in cochlear mechanics,” Hearing Research 9, 79–90.PubMedCrossRefGoogle Scholar
  10. Fahey, P. F. and Allen, J. B. (1985). “Nonlinear phenomena as observed in the ear canal and at the auditory nerve,” J. Acoust. Soc. Am 77, 599–612.PubMedCrossRefGoogle Scholar
  11. Geisler, C. D., and Rhode, W. S. (1982). “The Phases of basilar-membrane vibrations,” J. Acoust. Soc. Am. 71, 1201–1203.PubMedCrossRefGoogle Scholar
  12. Hall, J. L. (1981). “Observations on a nonlinear model for motion of the basilar membrane,” in Hearing Research and Theory I, Academic Press, New York, 1–61.Google Scholar
  13. Javel, E., Geisler, D.C., Ravindran, A. (1978). “Two-tone suppression in auditory nerve of the cat: Rate-intensity and temporal analyses,” J. Acoust. Soc. Am. 63, 1093–1104.PubMedCrossRefGoogle Scholar
  14. Khanna S. M., and Leonard, D. (1982), “Basilar membrane tuning in the cat cochlea.” Science 215, 305–306.PubMedCrossRefGoogle Scholar
  15. Khanna, S. M., and Leonard, D. G. B. (1986), “Relationship between basilar membrane tuning and hair cell condition,” Hearing Research 23, 55–70.PubMedCrossRefGoogle Scholar
  16. Kuile, E. ter. (1900). “Die Uebertragung der Energie von der Grundmanbran auf die Haasellen,” Pflueg. Arch, ges Physiol. 79, 146–157.CrossRefGoogle Scholar
  17. Liberman, M. C., and Dodds, L. W. (1984). “Single-neuron labeling and chronic cochlear pathology. III. Sterocilia damage and alterations of threshold tuning curves,” Hearing Research 16, 55–74.PubMedCrossRefGoogle Scholar
  18. Neely, S. T. (1981). “Fourth-order partition dynamics of a two-dimensional model of the cochlea,” Doctoral dissertation, Washington Univ., St. Louis, MO.Google Scholar
  19. Neely, S. T., and Kim, D. O. (1983). “An active cochlear model showing sharp tuning and high sensitivity,” Hearing Research 9, 123–130.PubMedCrossRefGoogle Scholar
  20. Neely, S. T., and Kim, D. O. (1986). “A model for active elements in cochlear biomechanics” J. Acoust. Soc. Am. 79, 1472–1480.PubMedCrossRefGoogle Scholar
  21. Rhode, W. (1971). “Observations of the vibrations of the basilar membrane in squirrel monkeys using the Mossbauer technique,” J. Acoust. Soc. Am. 49, 1218–1231.PubMedCrossRefGoogle Scholar
  22. Rhode, W. (1978). “Some observations on cochlear mechanics,” J. Acoust. Soc. Am. 64, 158–176.PubMedCrossRefGoogle Scholar
  23. Robles, L., Ruggero, M. A., Rich, N. C. (1986). “Basilar membrane mechanics at the base of the chinchilla cochlea. I. Input-output functions, tuning curves, and response phases,” J. Acoustical Soc. Am. 80, 1364–1374.CrossRefGoogle Scholar
  24. Russell, I. and Sellick, P. (1978). “Intracellular studies of hair cells in the mammalian cochlea,” J. Physiol. 284, 261–290.PubMedGoogle Scholar
  25. Sachs, M. B., and Kiang, Y. S. (1968). “Two-Tone inhibition in auditory-nerve fibers,” J. Acoust. Soc. Am. 43, 1120–1128.PubMedCrossRefGoogle Scholar
  26. Santos-Sacchi, J. and Dilger, J.P. (1988). “Electrically induced mechanical response of outer hair cells is membrane potential dependent,” submitted to Hearing Research. Also see 11th ARO Midwinter Meeting 1988, p. 171.Google Scholar
  27. Sellick, P. M., Patussi, R., and Johnstone, B. M. (1982). “Measurement of basilar membrane motion in the guinea pig using the Mossbauer technique,” J. Acoustical Soc. Am. 72, 131–141.CrossRefGoogle Scholar
  28. Sellick, P. M., Patussi, R., and Johnstone, B. M. (1983). “Comparison between the tuning properties of inner haircells and basilar membrane motion,” Hearing Research 10, 93–100.PubMedCrossRefGoogle Scholar
  29. Zwislocki, J. J., and Kletsky, E. J. (1979). “Tectorial Membrane: A Possible Effect on Frequency Analysis in the Cochlea,” Science 204, 639–641.PubMedCrossRefGoogle Scholar
  30. Zwislocki, J. J. (1980). “Five Decades of Research on Cochlear Mechanics,” J. Acoust. Soc. Am. 67, 1679–1685.PubMedGoogle Scholar
  31. Zwislocki, J. J., and Kletsky, E. J. (1980). “Micromechanics in the theory of cochlear mechanics,” Hearing Research 2, 505–512.PubMedCrossRefGoogle Scholar
  32. Allen, J.B. (1977) “Cochlear Micromechanics — A Mechanism for Transforming Mechanical to Neural Tuning within the Cochlea”, JASA, 62, 930–939.Google Scholar
  33. Allen, J.B. (1980) “Cochlear Micromechanics — A Physical Model of Transduction”, JASA, 68, 1660–1670.Google Scholar
  34. Wilson, J.P. (1977) Towards a model for cochlear frequency analysis. In: Psychophysics and Physiology of Hearing. Eds. E.F. Evans and J.P. Wilson. Academic Press, London, pp. 115–124.Google Scholar
  35. Wilson, J.P. and Bruns, V. (1983) Basilar membrane tuning properties in the specialised cochlea of the CF-bat, Rhinolophus ferrumequinum. Hearing Res., 10, 15–35.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Jont B. Allen
    • 1
  1. 1.Acoustics Research Dept.AT&T Bell LaboratoriesMurray HillUSA

Personalised recommendations