On the Stability of Cochlear Mechanical Models

  • John W. Matthews
  • Charles E. Molnar
Part of the NATO ASI Series book series (NSSA)


We have found that the introduction of nonlinear damping into stable computational simulations of active cochlear mechanical models generally made the simulations unstable in the sense that unbounded or oscillatory responses were obtained. This paper reports preliminary results of our efforts to determine what combinations of several possible causes might be responsible.


Periodic Solution Hopf Bifurcation Bifurcation Diagram Solution Branch Otoacoustic Emission 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen, J.B. (1977) Two-dimensional cochlear fluid model: New results. J. AcousL Soc. Am. 61, 110–119.CrossRefGoogle Scholar
  2. Boyce, W.E. and DiPrima, R.C. (1969) Elementary Differential Equations and Boundary Value Problems. John Wiley and Sons, Inc., New York.Google Scholar
  3. Cook, P.A. (1986) Nonlinear Dynamical Systems. Prentice Hall International, Englewood Cliffs, New Jersey.Google Scholar
  4. Doedel, E J. (1981) AUTO: A program for the automatic bifurcation analysis of autonomous systems. Cong. Num. 30, 265–284.Google Scholar
  5. (Proc. 10th Manitoba Conf. on Num. Math, and Computing, Winnepeg, Canada, October 1980).Google Scholar
  6. Doedel, E.J. (1984) The computer-aided bifurcation analysis of predator-prey models. J. Math. Biology 20, 1–14.CrossRefGoogle Scholar
  7. Doedel, E.J. (1986) AUTO: Software for Continuation and Bifurcation Problems in Ordinary Differential Equations. California Institute of Technology, Pasadena, Calif.Google Scholar
  8. Guckenheimer, J. and Holmes, J.P. (1986) Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer-Verlag, New York.Google Scholar
  9. Hirsch, M.W. and Smale, S. (1974) Differential Equations, Dynamical Systems and Linear Algebra. Academic Press, New York.Google Scholar
  10. Kemp, D.T. (1978) Stimulated acoustic emissions from within the human auditory system. J. AcousL Soc. Am. 64, 1386–1391.CrossRefGoogle Scholar
  11. Kubicek, M. and Marek, M. (1983) Computational Methods in Bifurcation Theory and Dissipative Structures. Springer-Verlag, New York.Google Scholar
  12. Lien, M.D. and Cox, J.R. (1974) A mathematical model of the mechanics of the cochlea. J. AcousL Soc. Am. 55, 432(A).Google Scholar
  13. Lien, M.D. (1973) A mathematical model of the mechanics of the cochlea. D.Sc. dissertation, Washington University, St. Louis.Google Scholar
  14. Long, G.R. (1984) The microstructure of quiet and masked thresholds. Hearing Res. 15, 73–87.CrossRefGoogle Scholar
  15. Long, G.R., Tubis, A. and Jones, K.L. (1986) Changes in spontaneous and evoked otoacoustic emissions and the corresponding psychoacoustic threshold microstructure induced by aspirin consumption. In: Peripheral Auditory Mechanisms (Eds: Allen, J.B., Hall, J.L., Hubbard, A.E., Neely, S.T. and Tubis, A.) Springer Verlag, Berlin, pp. 213–218.Google Scholar
  16. Matthews, J.W. (1980) Mechanical Modeling of Nonlinear Phenomena Observed in the Peripheral Auditory System. D.Sc. dissertation, Washington University, St. Louis.Google Scholar
  17. Neely, S.T. (1979) Research on cochlear mechanics — spring 1979. (unpublished manuscript).Google Scholar
  18. Neely, S.T. (1981) Fourth-Order Partition Dynamics for a Two-Dimensional Model of the Cochlea. D.Sc. dissertation, Washington University, St. Louis.Google Scholar
  19. Percival, I. and Richards, D. (1982) Introduction to Dynamics. Cambridge University Press, Cambridge.Google Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • John W. Matthews
    • 1
  • Charles E. Molnar
    • 1
  1. 1.Institute for Biomedical ComputingWashington UniversitySt. LouisUSA

Personalised recommendations