Otoacoustic Evidence for Nonlinear Behaviour in Frogs’ Hearing: Suppression but No Distortion Products

  • R. J. Baker
  • J. P. Wilson
  • M. L. Whitehead
Part of the NATO ASI Series book series (NSSA)


There is evidence that the mechanism responsible for the sharp auditory tuning in vertebrates may differ between classes. In mammals it has been shown, contrary to earlier indications, that the sharp tuning can be found at the level of the mechanical motion of the basilar membrane (Khanna and Leonard, 1982; Sellick et al., 1982; Robles et al., 1985). Such properties appear to be the result of the combination of passive basilar membrane mechanics and an active positive feedback mechanism which serves to sharpen the tuning of the basilar membrane motion. The presence of such sharp basilar membrane tuning negates the need for an additional filter within the mechanical to neural transduction mechanism.


Hair Cell Basilar Membrane Otoacoustic Emission Rana Temporaria Distortion Product 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Capranica, R.R. (1976) Morphology and Physiology of the Auditory system. In: Frog Neurobiology (Eds: Llinas, R. and Precht, W.) Springer-Verlag, Berlin, pp.551–575.CrossRefGoogle Scholar
  2. Capranica, R.R. and Moffat, A.J.M. (1980) Nonlinear Properties of the Peripheral Auditory System of Anurans. In: Comparative Studies of Hearing in Vertebrates (Eds. Popper, A.N. and Fay, R.R.) Springer-Verlag, N.Y. pp.139–165.CrossRefGoogle Scholar
  3. Crawford, A.C. and Fettiplace, R. (1981a) An electrical tuning mechanism in turtle cochlear haircells. J. Physiol., 312, 377–412.PubMedGoogle Scholar
  4. Crawford, A.C. and Fettiplace, R. (1981b) Non-linearities in the responses of turtle hair cells. J. Physiol., 315, 317–338.PubMedGoogle Scholar
  5. Evans, E.F., Wilson, J.P. and Borerwe, T.A. (1981) Animal models of tinnitus. In: Tinnitus. Ciba Found. Symp. 85. (Eds: Evered, D. and Lawrenson, G.) Pitman, London, pp.108-129.Google Scholar
  6. Gummer, A.W. and Klinke, R. (1983) Influence of temperature on tuning of primary-like units in the guinea pig cochlear nucleus. Hear. Res., 12, 367–380.PubMedCrossRefGoogle Scholar
  7. Hillery, C.M. and Narins, P.M. (1984) Neurophysiological evidence for a travelling wave in the amphibian inner ear. Science 225, 1037–1039.PubMedCrossRefGoogle Scholar
  8. Kemp, D.T. (1979) Evidence of mechanical nonlinearity and frequency selective wave amplification in the cochlea. Arch. Otorhinolaryngol. 224, 37–45.PubMedCrossRefGoogle Scholar
  9. Kemp, D.T. and Brown, A.M. (1986) Wideband analysis of otoacoustic intermodulation. In: Peripheral Auditory Mechanisms (Eds. Allen, J.B., Hall, J.L., Hubbard, A., Neely, S.T. and Tubis, A.) Springer-Verlag, N.Y., pp.306–313.Google Scholar
  10. Khanna, S.M. and Leonard, D.G.B. (1982) Basilar membrane tuning in the cat cochlea. Science 215, 305–306,.PubMedCrossRefGoogle Scholar
  11. Lewis, E.R., Leverenz, E.L. and Koyama, H. (1982) The tonotopic organization of the bullfrog amphibian papilla: An auditory organ lacking a basilar membrane. J. Comp. Physiol. 145, 437–455.CrossRefGoogle Scholar
  12. Moffat, A.J.M. and Capranica, R.R. (1976) Effects of temperature on the response properties of auditory nerve fibers in the American toad (Bufo americanus). J. Acoust. Soc. Am. 60, S80.CrossRefGoogle Scholar
  13. Narins, P.M. and Hillery, C.M. (1983) Frequency coding in the inner ear of anuran amphibians. In: Hearing — Physiological Bases and Psychophysics (Eds: Klinke, R. and Hartmann, R.) Springer-Verlag, Berlin, pp.70–76.Google Scholar
  14. Pitchford, S. and Ashmore, J.F. (1987) An electrical resonance in hair cells of the amphibian papilla of the frog Rana temporaria. Hear. Res. 27, 75–83.PubMedCrossRefGoogle Scholar
  15. Rabinowitz, W.M. and Widin, G.P. (1984) Interaction of spontaneous otoacoustic emissions and external sounds. J. Acoust. Soc. Am. 76, 1713–1720.PubMedCrossRefGoogle Scholar
  16. Robles, L., Ruggero, M.A., and Rich, N.C. (1985) Mössbauer measurements of the mechanical response to single-tone and two-tone stimuli at the base of the chinchilla cochlea. In: Peripheral Auditory Mechanisms (Eds. Allen, J.B., Hall, J.L., Hubbard, A., Neely, S.T. and Tubis, A.) Springer-Verlag, N.Y., pp.121–128.Google Scholar
  17. Ruggero, M.A., Kramek, B. and Rich, N.C. (1984) Spontaneous otoacoustic emissions in a dog. Hear. Res. 13, 293–296.PubMedCrossRefGoogle Scholar
  18. Sellick, P.M., Patuzzi, R. and Johnstone, B.M. (1982) Measurement of basilar membrane motion in guinea pig cochlea using the Mössbauer technique. J. Acoust. Soc. Am. 72, 131–141.PubMedCrossRefGoogle Scholar
  19. Smolders, J. and Klinke, R. (1984) Effects of temperature on the properties of primary auditory fibres of the spectacled caiman, Caiman crocodilus. J. Comp. Physiol. 155, 19–30.CrossRefGoogle Scholar
  20. Strack, G., Klinke, R. and Wilson, J.P. (1981) Evoked cochlear mechanical responses in Caiman crocodilus. Pflugers Arch. Suppl. 391, R43.Google Scholar
  21. Weiss, T.F., Peake, W.T., Ling, A. and Holton, T. (1978) Which structures determine frequency selectivity and tonotopic organisation of vertebrate cochlear nerve fibres In: Evoked Electrical Activity in the Auditory Nervous System (Eds: Naunton, R. and Fernandez, C.) Academic Press, N.Y., pp.9–112.Google Scholar
  22. Whitehead, M.L., Wilson, J.P. and Baker, R.J. (1986) The effects of temperature on otoacoustic emission tuning properties. In: Auditory Frequency Selectivity (Eds: Moore, B.C.J. and Patterson, R.D.) Plenum, London, pp. 39–46.Google Scholar
  23. Wilson, J.P. (1980) Evidence for a cochlear origin for acoustic re-emission, threshold fine structure and tonal tinnitus. Hear. Res. 2, 233–252.PubMedCrossRefGoogle Scholar
  24. Wilson, J.P. and Sutton, G.J. (1981) Acoustic correlates of tonal tinnitus. In: Tinnitus. Ciba Found. Symp. 85. (Eds. Evered, D. and Lawrenson, G.) Pitman, London, pp.82–101.Google Scholar
  25. Wilson, J.P. (1984) Otoacoustic emissions and hearing mechanisms. Rev. Laryngol. 105,(2) Suppl., 179–191.Google Scholar
  26. Wilson, J.P. (1985) The influence of temperature on frequency-tuning mechanisms. In: Peripheral Auditory Mechanisms (Eds: Allen, J.B., Hall, J.L., Hubbard, A., Neely, S.T. and Tubis, A.) Springer-Verlag, N.Y., pp.229–236.Google Scholar
  27. Wilson, J.P., Baker, R.J. and Whitehead, M.L. (1988) Level dependence of frequency tuning in human ears. In: Proceedings 8th. International Symposium on Hearing — Basic Issues in Hearing, Groningen, Academic Press, In press.Google Scholar
  28. Zurek, P.M. (1981) Spontaneous narrowband acoustic signals emitted by human ears. J. Acoust. Soc. Am. 69, 514–523.PubMedCrossRefGoogle Scholar
  29. Zurek, P.M. and Clark, W.W. (1981) Narrow-band acoustic signals emitted by chinchilla ears after noise exposure. J. Acoust. Soc. Am. 70, 446–450.CrossRefGoogle Scholar
  30. Lewis, E.R. (1984) On the frog amphibian papilla. Scan. Electr. Microsc. 1984: 1899–1913.Google Scholar
  31. Lewis, E.R. (1987) Speculations about noise and the evolution of vertebrate hearing. Hearing Res. 25, 83–90.CrossRefGoogle Scholar
  32. Lewis, E.R. and Lombard, R.E. (1988) The amphibian inner ear. In: The Evolution of the Amphibian Auditory System (Ed. B. Fritsch) Wiley, N.Y., pp. 93–123.Google Scholar
  33. Zakon, H.H. and Wilczynski, W. (1988) The physiology of the anuran eighth nerve. In: The Evolution of the Amphibian Auditory System (Ed. B. Fritsch) Wiley, N.Y., pp. 125–155.Google Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • R. J. Baker
    • 1
  • J. P. Wilson
    • 1
  • M. L. Whitehead
    • 1
  1. 1.Department of Communication and NeuroscienceUniversity of KeeleStaffsUK

Personalised recommendations