Advertisement

Tracking and Interpretive Models of the Active-Nonlinear Cochlear Response during Reversible Changes Induced by Aspirin Consumption

  • A. Tubis
  • G. R. Long
  • S. Sivaramakrishnan
  • K. L. Jones
Part of the NATO ASI Series book series (NSSA)

Abstract

Aspirin consumption in humans has been found to reversibly reduce delayed-evoked and synchronous-evoked otoacoustic emisions, and to reversibly reduce and subsequently abolish spontaneous emissions (Johnsen and Elberling, 1982; McFadden and Plattsmier, 1984; Long, Tubis and Jones, 1986; Probst et al., 1986; Pasanen et al., 1987; Long and Tubis, 1988a; Long et al., 1988).

Keywords

Spontaneous Emission Outer Hair Cell Basilar Membrane Tuning Curve Otoacoustic Emission 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ashmore, J.F. (1987) A fast motile response in guinea-pig outer hair cells: The cellular basis of the cochlear amplifier. J. Physiol. 388, 323–347.PubMedGoogle Scholar
  2. Bialek, W.S. and Wit, H.P. (1984) Quantum limits to oscillator stability: theory and experiments on acoustic emissions from the human ear. Phys. Lett. 104A, 1973–1978.Google Scholar
  3. Diependaal, R.J., Duifhuis, H., Hoogstraten, H.W. and Viergever, M.A. (1987) Numerical methods for solving one-dimensional cochlear models in the time domain. J. Acoust. Soc. Am. 82, 1655–1666.PubMedCrossRefGoogle Scholar
  4. Geisler, C.D. (1986) A model of the effect of outer hair cell motility on cochlear vibrations. Hear. Res. 24, 125–131.PubMedCrossRefGoogle Scholar
  5. Hanggi, P. and Riseborough, P. (1983) Dynamics of nonlinear dissipative oscillators. Am. J. Physics 51, 347–351.CrossRefGoogle Scholar
  6. Johnsen, N.J. and Elberling, C. (1982) Evoked acoustic emissions from the human ear. I. Equipment and response parameters. Scand. Audiol. 11, 3–12.Google Scholar
  7. Jones, K.L., Tubis, A., Long, G.R., Burns, E.M. and Strickland, E.A. (1986) Interactions among multiple spontaneous otoacoustic emissions. In: Peripheral Auditory Mechanisms (Eds: Allen, J.B., Hall, J.L., Hubbard, A.E., Neely, S.T. and Tubis, A.) Springer Verlag, Berlin, pp. 266–273.Google Scholar
  8. Koshigoe, S. and Tubis, A. (1983) A nonlinear feedback model for outer-hair-cell stereocilia and its implication for the response of the auditory periphery. In: Mechanics of Hearing (Eds: de Boer, E. and Viergever, M.A.) Delft University Press, Delft, pp. 127–134.CrossRefGoogle Scholar
  9. Long, G.R. and Tubis, A. (1988a) Modification of spontaneous and evoked otoacoustic emissions and associated psycho acoustic microstructure by aspirin consumption. J. Acoust. Soc. Am., submitted.Google Scholar
  10. Long, G.R. and Tubis, A. (1988b) Investigations into the nature of the association between threshold microstructure and otoacoustic emissions. Hear. Res., submitted.Google Scholar
  11. Long, G.R., Tubis, A. and Jones, K.L. (1986) Changes in spontaneous and evoked otoacoustic emissions and the corresponding psycho acoustic threshold micro structure induced by aspirin consumption. In: Peripheral Auditory Mechanisms (Eds: Allen, J.B., Hall, J.L., Hubbard, A.E., Neely, S.T. and Tubis, A.) Springer Verlag, Berlin, pp. 213–218.Google Scholar
  12. Long, G.R., Tubis, A., Jones, K.L. and Sivaramakrishnan, S. (1988) Modification of the external-tone synchronization and statistical properties of spontaneous otoacoustic emissions by aspirin consumption In: Basic Issues in Hearing (Eds: Duifhuis, H., Horst, J.W., and Wit, H.P.) University Press Groningen, The Netherlands, in press.Google Scholar
  13. Machlup, S. and Sluckin, T.J. (1980) Driven oscillations of a limit-cycle oscillator. J. Theor. Biol. 84, 119–134.PubMedCrossRefGoogle Scholar
  14. Matthews, J.W. (1980) Mathematical modeling of nonlinear phenomena observed in the peripheral auditory system. Ph.D. thesis, Washington University, St. Louis, MO.Google Scholar
  15. McFadden, D. and Plattsmier, H.S. (1984) Aspirin abolishes spontaneous otoacoustic emissions. J. Acoust. Soc. Am. 76, 443–448.PubMedCrossRefGoogle Scholar
  16. Neely, S.T. and Kim, D.O. (1986) A model for active elements in cochlear biomechanics. J. Acoust. Soc. Am. 79, 1472–1480.PubMedCrossRefGoogle Scholar
  17. Pasanen, G., Weir, C.G. and McFadden, D. (1987) Reciprocal relation between the growth of an emitted cubic distortion product and the suppression of a spontaneous otoacoustic emission. J. Acoust. Soc. Am. 81 Suppl. 1, S8.CrossRefGoogle Scholar
  18. Probst, R., Coats, A.C., Martin, G.K. and Lonsbury-Martin, B.L. (1986) Spontaneous click-and toneburst-evoked otoacoustic emissions from normal ears. Hear. Res. 21, 261–275.PubMedCrossRefGoogle Scholar
  19. Stratonovich, R.L. (1963) Topics in Theory of Random Noise, Volume II, Gordon and Breach, New York, pp. 222–276.Google Scholar
  20. van Dijk, P. and Wit, H.P. (1987) Phase-lock of spontaneous otoacoustic emissions to a cubic-difference tone. In: Basic Issues in Hearing (Eds: Duifhuis, H., Horst, J.W. and Wit, H.P.) University Press, Groningen, The Netherlands, in press.Google Scholar
  21. Wit, H.P. (1986) Statistical properties of a strong spontaneous otoacoustic emission. In: Peripheral Auditory Mechanisms (Eds: Allen, J.B., Hall, J.L., Hubbard, A.E., Neely, S.T. and Tubis, A.) Springer Verlag, Berlin, pp. 221–228.Google Scholar
  22. Zwicker, E. and Schloth, E. (1984) Interaction of different otoacoustic emissions. J. Acoust. Soc. Am. 75, 1148–1154.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • A. Tubis
    • 1
  • G. R. Long
    • 1
    • 2
  • S. Sivaramakrishnan
    • 1
    • 2
  • K. L. Jones
    • 1
    • 3
  1. 1.Department of PhysicsPurdue UniversityWest LafayetteUSA
  2. 2.Department of Audiology and Speech SciencesPurdue UniversityWest LafayetteUSA
  3. 3.Division of Otolaryngology, Health CenterUniversity of ConnecticutFarmingtonUSA

Personalised recommendations