Skip to main content

Cochlear Filtering: A View Seen through the Temporal Discharge Patterns of Single Cochlear Nerve Fibres

  • Chapter
Cochlear Mechanisms: Structure, Function, and Models

Part of the book series: NATO ASI Series ((NSSA))

Abstract

While the mechanisms underlying cochlear filtering are no doubt non-linear, a number of investigations have indicated that cochlear spectral analysis behaves surprisingly linearly. As seen by individual fibres of the cochlear nerve, with due allowances for transducer and synaptic (no memory type) non-linearities, the filtering of broad-band and multi-component stimuli is, to a first approximation at least, well modelled by linear filters. This has been shown in discharge rate terms for broad-band noise stimuli, in the predictability of noise thresholds from pure tone thresholds (yielding measures of effective bandwidths — Evans and Wilson, 1971), and, for comb-filtered noise stimuli in terms of the predictability of response ‘contrast’ (Wilson and Evans, 1971).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • de Boer, E. (1969). Reverse correlation II. Initiation of nerve impulses in the inner ear. Proc. Kon. Nederl. Akat. Wet. 72, 129–151.

    Google Scholar 

  • de Boer, E. (1973). On the principle of specific coding. J. Dynamic Systems Measurement & Control. Sept, 265-273.

    Google Scholar 

  • de Boer, E. & Kuyper, P. (1968). Triggered correlation. IEEE Trans. Biomed. Eng. 15, 169–179.

    Article  PubMed  Google Scholar 

  • Duifhuis, H. (1973). Consequences of peripheral frequency selectivity for non-simultaneous masking. J. Acoust. Soc. Am. 53, 1471–1488.

    Article  Google Scholar 

  • Evans, E. F. (1977). Frequency selectivity at high signal levels of single units in cochlear nerve and nucleus. In: Psychophysics and Physiology of Hearing: E.F. Evans and J.P. Wilson eds., Academic Press. London, 185–192.

    Google Scholar 

  • Evans, E. F. (1978). Place and time coding of frequency in the peripheral auditory system: some physiological pros and cons. Audiol. 17, 369–420.

    Article  CAS  Google Scholar 

  • Evans, E. F. (1979). Single unit studies of the mammalian auditory nerve. In: Auditory Investigations: The Scientific and Technological Basis. H.A. Beagley ed, Oxford University Press. Oxford, 324–367.

    Google Scholar 

  • Evans, E. F. (1980). An electronic analogue of single unit recording from the cochlear nerve for teaching and research. J Physiol. 298, 6–7P.

    Google Scholar 

  • Evans, E. F. (1981). The dynamic range problem: place and time coding at the level of cochlear nerve and nucleus. In: Neuronal Mechanisms of Hearing: J Syka and L Aitken ed, Plenum Press. NY, 69–85.

    Chapter  Google Scholar 

  • Evans, E. F. (1983a). Pitch and cochlear fibre temporal discharge patterns. In: Hearing — Physiological Bases and Psychophysics: R. Klinke and R. Hartmann eds., Springer Verlag. Berlin Heidelberg New York, 140–145.

    Google Scholar 

  • Evans, E. F. (1983b). Computer-controlled synthesis of acoustic stimuli and analysis of single unit responses. Brit J Audiol. 17, 120–120.

    Google Scholar 

  • Evans, E. F. (1984a). Spectral analysis of complex sounds at the auditory periphery. Proc Institute of Acoustics Spring Meeting 1984, Institute of Acoustics. Edinburgh, 431–438.

    Google Scholar 

  • Evans, E. F. (1984b). A method for automatically determining the frequency threshold of the gross cochlear action potential (“the AP audiogram”). Brit J Audiol. 18, 246–247.

    Google Scholar 

  • Evans, E. F. (1985). Aspects of the neuronal coding of time in the mammalian peripheral auditory system relevant to temporal resolution. In: Time Resolution in Auditory Systems: 11th Danavox Symposium: A. Michelsen ed, Springer Verlag. Berlin Heidelberg New York, 74–95.

    Chapter  Google Scholar 

  • Evans, E. F. (1986). Cochlear nerve fibres:temporal discharge patterns, cochlear frequency selectivity and the dominant region for pitch. In: Auditory Frequency Selectivity: BCJ Moore and RD Patterson eds, Plenum Press. New York and London, 253–264.

    Google Scholar 

  • Evans, E. F. (1987). Modelling cochlear nerve fibre responses to complex pitch-producing stimuli. Brit J Audiol. 21, 311–311.

    Google Scholar 

  • Evans, E. F. (1988). Cochlear nerve discharge patterns in response to complex stimuli:Model predictions and neural data. Brit J Audiol. 0, 0–0.

    Google Scholar 

  • Evans, E. F. & Elberling, C. E. (1982). Location-specific components of the gross cochlear action potential: an assessment of the validity of the high-pass masking technique by cochlear nerve fibre recording in the cat. Audiol. 21, 204–227.

    Article  CAS  Google Scholar 

  • Evans, E. F. & Wilson, J. P. (1971). Frequency sharpening of the cochlea: the effective bandwidth of cochlear nerve fibres. Proc. 7th Internat. Cong, on Acoustics: Akademiai Kiado, Budapest. 3, 453–456.

    Google Scholar 

  • Fitzgibbons, P. J. & Wightman, F. L. (1982). Gap detection in normal and hearing-impaired listeners. J. Acoust. Soc. Am. 72, 761–765.

    Article  PubMed  CAS  Google Scholar 

  • Greenberg, S., Geisler, C. D. & Deng, L. (1986). Frequency selectivity of single cochlear nerve fibers based on the temporal response to two-tone signals. J. Acoust. Soc. Am. 79, 1010–1019.

    Article  PubMed  CAS  Google Scholar 

  • Harrison, R. V. & Evans, E. F. (1982). Reverse correlation study of cochlear Altering in normal and pathological guinea pig ears. Hearing Research. 6, 303–314.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, D. H. (1974). The response of single auditory-nerve fibres in the cat to single tones: Synchrony and average discharge rate. Unpublished Ph.D. Thesis. M.I.T., 1-280.

    Google Scholar 

  • Parker, D. J. & Evans, E. F. (1987). The frequency: Intensity distribution of excitation and suppression in terms of firing rate and synchrony of discharges in cat cochlear nerve fibres. Brit J Audiol. 21, 104–104.

    Google Scholar 

  • Wilson, J. P. & Evans, E. F. (1971). Grating acuity of the ear: psychophysical and neurophysiological measures of frequency resolving power. Proc. 7th Internat. Cong, on Acoustics: Akademiai Kiado, Budapest. 3, 397–400.

    Google Scholar 

  • Wilson, J. P. & Evans, E. F. (1975). Systematic error in some methods of reverse correlation. J. Acoust. Soc. Am. 57, 215–216.

    Article  PubMed  CAS  Google Scholar 

  • Horst, J.W., Javel, E. and Farley, G.R. (1985) Extraction and enhancement of spectral structure by the cochlea. J. Acoust. Soc. Am., 78, 1898–1901.

    Article  PubMed  CAS  Google Scholar 

  • Horst, J.W., Javel, E. and Farley, G.R. (1986a) Coding of spectral fine structure in the auditory nerve. I. Fourier analysis of period and interspike interval histograms. J. Acoust. Soc. Am., 79, 398–416.

    Article  PubMed  CAS  Google Scholar 

  • Horst, J.W., Javel, E. and Farley, G.R. (1986b) Effects of phase-and amplitude spectrum in the nonlinear processing of complex stimuli in single fibers of the auditory nerve. In: Auditory Frequency Selectivity, B.C.J. Moore and R.D. Patterson (eds.), Plenum Press, New York and London, 229–239.

    Google Scholar 

  • Sinex, D.G. and Geisler, C.D. (1984) Comparison of the responses of auditory nerve fibers to consonant-vowel syllables with predictions from linear models. J. Acoust. Soc. Am., 76, 116–121.

    Article  PubMed  CAS  Google Scholar 

  • Young, E.D. and Sachs, M.B. (1979) Representation of steady-state vowels in the temporal aspects of the discharge patterns of populations of auditory nerve fibers. J. Acoust. Soc. Am., 66, 1381–1403.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Plenum Press, New York

About this chapter

Cite this chapter

Evans, E.F. (1989). Cochlear Filtering: A View Seen through the Temporal Discharge Patterns of Single Cochlear Nerve Fibres. In: Wilson, J.P., Kemp, D.T. (eds) Cochlear Mechanisms: Structure, Function, and Models. NATO ASI Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5640-0_30

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5640-0_30

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5642-4

  • Online ISBN: 978-1-4684-5640-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics