Advertisement

On the Origin of Interspecific Differences in Auditory Susceptibility

  • L. Décory
  • A. Guilhaume
  • A. Dancer
  • J.-M. Aran
Part of the NATO ASI Series book series (NSSA)

Abstract

Noise-induced hearing losses have been widely studied over the past decades. But the different animal species and experimental conditions used rarely allowed interspecific correlations or extrapolation of the results to the human species.

Keywords

Hair Cell Noise Exposure Basilar Membrane Interspecific Difference Threshold Shift 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cody, A.R. and Robertson, D. (1983) Variability of noise-induced damage in the guinea pig cochlea: Electrophysiological and morphological correlates after strictly controlled exposures Hearing Res. 9, 55–70.CrossRefGoogle Scholar
  2. Cody, A.R., Robertson, D., Bredberg, G. and Johnstone, B.M. (1980) Electrophysiological and morphological changes in the guinea pig cochlea following mechanical trauma to the organ o: Corti. Acta Otolaryngol. 89, 440–452.PubMedCrossRefGoogle Scholar
  3. Dallos, P. (1973) The auditory periphery. Acad press. New-York and London.Google Scholar
  4. Dancer, A. and Franke, R. (1980) Intracochlear sound pressure measurements in guinea pigs. Hearing Res. 2, 191–205.CrossRefGoogle Scholar
  5. Eldredge, D.H. Miller, J.D. and Bohne, B.A. (1981) A frequency-position map for the chinchill; cochlea J. Acoust. Soc. Am. 69, 1091–1095.PubMedCrossRefGoogle Scholar
  6. Johnstone, J.R. (1977) Properties of ganglion cells from the extreme base region of the guinea pig cochlea. Psychophysics and Physiology of Hearing (Ed. E.F. Evans and J.P. Wilson), p89, Academic Press, London.Google Scholar
  7. Liberman, M.C. (1982) The cochlear frequency map for the cat: Labelling auditory-nerve fibers known characteristic frequency. J. Acoust. Soc. Am. 75, 1441–1449.CrossRefGoogle Scholar
  8. Lynch, T.J., Netzelnitski, V. and Peake, W.T. (1982) Input impedance of the cochlea in cat., J. AcoustSoc.Am., 72, 108–130.PubMedCrossRefGoogle Scholar
  9. Nedzelnitsky, V. (1980) Sound pressure in the basal turn of the cat cochlea. J. Acoust. Soc. Am 68, 1676–1689.PubMedCrossRefGoogle Scholar
  10. Robertson, D. and Johnstone, B.M. (1980) Acoustic trauma in the guinea pig cochlea: early changes in ultrastructure and neural threshold. Hearing Res. 3, 167–179.CrossRefGoogle Scholar
  11. Rosowski, J.J., Carney, L.H., Lynch, T.J. and Peake, W.T. (1985) The effectiveness of external and middle ears in coupling acoustic power into the cochlea, in: Lectures Notes in Biomathematics Peripheral Auditory Mechanisms, Springer Verlag, 3-12.Google Scholar
  12. Wilson, J.P. and Johnstone, J.R. (1975) Basilar membrane and middle ear vibration in guinea pig measures by a capacitive probe. J.AcoustSoc. Am., 57, 705.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • L. Décory
    • 1
  • A. Guilhaume
    • 1
    • 2
  • A. Dancer
    • 1
  • J.-M. Aran
    • 1
    • 2
  1. 1.French-German Research Institute of Saint-LouisSaint-LouisFrance
  2. 2.Laboratory of Experimental AudiologyINSERM U229, Hôpital PellegrinBordeaux CedexFrance

Personalised recommendations