Phase Reversal in OHC Response at High Sound Intensities

  • J. J. Zwislocki
  • R. L. Smith
Part of the NATO ASI Series book series (NSSA)


Kiang and his associates (e.g. Kiang, 1984) discovered an enigmatic phase shift of about 180° occurring in responses of auditory-nerve fibers at high sound intensities. One of us has demonstrated with the help of an electrical-network model that the phase shift can result from a nonlinear mechanical coupling between the tectorial membrane and the organ of Corti (Zwislocki, 1986). The associated distortion pattern produced by the model is essentially the same as found by Kiang’s group.


Outer Hair Cell Mongolian Gerbil Tectorial Membrane Cochlear Microphonic Reticular Lamina 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Dallos, P., Santos-Sacchi, J. and Flock, Å. (1982) Intracellular recordings from cochlear outer hair cells. Science 218, 582–584.PubMedCrossRefGoogle Scholar
  2. Kiang, N.Y.S. (1984) Peripheral neural processing of auditory information. In: Handbook of Physiology, Sect. 1, Vol. 3 (Ed.: Darian-Smith, I.) American Physiological Society, Bethesda, Maryland, pp. 639–674.Google Scholar
  3. Schmiedt, R. A. and Zwislocki, J. J. (1977) Comparison of sound-transmission and ccochlear-microphonic characteristics in Mongolian gerbil and guinea pig. J. Acoust. Soc. Am. 61, 133–149.PubMedCrossRefGoogle Scholar
  4. Strelioff, D., Flock, Å. and Minser, K. E. (1985). Role of inner and outer hair cells in mechanical frequency selectivity of the cochlea. Hearing Res. 18, 169–175.CrossRefGoogle Scholar
  5. Zwislocki, J. J. (1980) Five decades of research on cochlear mechanics. J. Acoust. Soc. Am. 67, 1679–1685.PubMedGoogle Scholar
  6. Zwislocki, J. J. (1982) Micromechanics of the cochlea and possible changes caused by intense noise. In: New Perspectives on Noise-Induced Hearing Loss (Eds: Hamernik, R. P., Henderson, D. and Salvi, R.) Raven Press, New York, pp. 209–224.Google Scholar
  7. Zwislocki, J. J. (1983) Cochlear micromechanics—a model and some of its consequences. In: Mechanisms of Hearing (Eds: Webster, R. W. and Aitkin, L. M.) Monash University Press, Clayton, Victoria, Australia, pp. 21–26.Google Scholar
  8. Zwislocki, J. J. (1984) How OHC lesions can lead to neural cochlear hypersensitivity. Acta Otolaryngol. 97, 529–534.PubMedCrossRefGoogle Scholar
  9. Zwislocki, J. J. (1985) Cochlear function—An analysis. Acta Otolaryngol. (Stockh) 100, 201–209.CrossRefGoogle Scholar
  10. Zwislocki, J. J. (1986a) Are nonlinearities observed in firing rates of auditory-nerve afferents reflections of a nonlinear coupling between the tectorial membrane and the organ of Corti? In: Procedings of Nobel Symposium 63: Cochlear Mechanisms in Hearing (Eds: Flock, Å. and Wersäll, J.) Elsevier, Amsterdam, pp. 217–221.Google Scholar
  11. Zwislocki, J. J. (1986b) Analysis of cochlear mechanics. In: Proceedings of Nobel Symposium 63. Cellular Mechanisms in Hearing (Eds: Flock, Å. and Wersäll) Elsevier, Amsterdam, pp. 155–169.Google Scholar
  12. Zwislocki, J. J. (1986c) Changes in cochlear frequency selectivity produced by tectorial-membrane manipulation. In: Auditory Frequency Selectivity (Eds: Moore, B.C.J. and Patterson, R. D.) Plenum, New York, pp. 3–11.Google Scholar
  13. Zwislocki, J. J. (1988). Mechanical properties of the tectorial membrane in situ. Acta Otolaryngol. (Stockh) 105 (in press).Google Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • J. J. Zwislocki
    • 1
  • R. L. Smith
    • 1
  1. 1.Institute for Sensory ResearchSyracuse UniversitySyracuseUSA

Personalised recommendations