Advertisement

S-Adenosylmethionine Decarboxylase from the Thermophilic Archaebacterium Sulfolobus Solfataricus

  • Giovanna Cacciapuoti
  • Marina Porcelli
  • Agata Gambacorta
  • Teresa Romano
  • Mario De Rosa
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 250)

Abstract

It is well known that S-adenosylmethionine decarboxylase (AdoMet DC) plays a key role in the polyamine biosynthetic pathway by catalyzing the formation of S-adenosyl(5′)-3-methylthiopropylamine, the donor of the propylamine moiety of polyamines (1–3).

Keywords

Methyl Glyoxal Pyridoxal Phosphate Histidine Decarboxylase SULFOLOBUS SOLFATARICUS Methionine Adenosyltransferase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. G. Williams-Ashman and A.E. Pegg, Amino propyl group transfers, in.: “Polyamines in Biology and Medicine” D.R. Morris and L.J. Marton, eds, Dekker, New York (1981).Google Scholar
  2. 2.
    C. W. Tabor and H. Tabor, Methionine adenosyltransferase (S-adenosylmethionine synthetase) and S-adenosylmethionine decarboxylase, Advances in Enzymol. 56: 25 (1984).Google Scholar
  3. 3.
    A. E. Pegg, Recent advances in the biochemistry of polyamines in eukaryotes, Biochem. J. 234: 249 (1986).PubMedGoogle Scholar
  4. 4.
    A. E. Pegg, S-adenosylmethionine decarboxylase. A brief review, Cell Biochem. Function 2: 11 (1984).CrossRefGoogle Scholar
  5. 5.
    C. W. Tabor and H. Tabor, Polyamines in microorganisms, Microbial Review 49: 81 (1985).Google Scholar
  6. 6.
    G. D. Markham, C. W. Tabor and H. Tabor, S-adenosylmethionine decarboxylase of Escherichia coli, studies on the covalently linked pyruvate required for activity, J. Biol. Chem. 257: 12063 (1982).PubMedGoogle Scholar
  7. 7.
    M. S. Cohn, C. W. Tabor and H. Tabor, Identification of pyruvoyl residue in S-adenosylmethionine decarboxylase from Saccharomyces cerevisiae, J. Biol. Chem. 252: 8212 (1977).PubMedGoogle Scholar
  8. 8.
    A. E. Pegg, Evidence for the presence of a pyruvate in rat liver S-adenosylmethionine decarboxylase, FEBS Lett. 84: 33 (1977).PubMedCrossRefGoogle Scholar
  9. 9.
    R. B. Wickner, C. W. Tabor and H. Tabor, Purification of adenosylmethionine decarboxylase from E. coli W: evidence for covalently bound pyruvate, J. Biol. Chem. 245: 2132 (1970).PubMedGoogle Scholar
  10. 10.
    D. L. Anton and R. Kutny, E. coli S-adenosylmethionine decarboxylase. Subunit structure, reductive amination and NH terminal sequence, J. Biol. Chem. 262: 2817 (1987).PubMedGoogle Scholar
  11. 11.
    C. W. Tabor and H. Tabor, The speEspeD operon of E. coli formation and processing of a proenzyme form of S-adenosylmethionine decarboxylase, J. Biol. Chem. 262: 16037 (1987).PubMedGoogle Scholar
  12. 12.
    P. A. Recsei, W. M. Moore and E. E. Snell, Pyruvoyl-dependent histidine decarboxylase from Clostridium perfringens and Lactobacillus buchneri, J. Biol. Chem. 258: 439 (1983).PubMedGoogle Scholar
  13. 13.
    V. Zappia, M. Cartenì-Farina and G. Della Pietra, S-adenosylmethionine decarboxylase from human prostate, activation by putrescine, Biochem. J. 120: 703 (1972).Google Scholar
  14. 14.
    A. E. Pegg, L. Wiest and A. Pajunen, Detection of proenzyme form of S-adenosylmethionine decarboxylase in extracts from rat prostate, Biochim. Biophys. Res. Commun. 150: 788 (1988).CrossRefGoogle Scholar
  15. 15.
    K. H. Schleifer and E. Stackenbrandt, Molecular systematics of prokaryotes, Annu. Rev. Microbial. 37: 143 (1982).CrossRefGoogle Scholar
  16. 16.
    C. R. Woese, L. J. Magrum and G. E. Fox, Archaebacteria J. Mol. Evol. 11: 245 (1978).PubMedCrossRefGoogle Scholar
  17. 17.
    L. M. Van Valen and V. C. Maiorana, The archaebacteria and eukaryotic origins, Nature (London) 287: 248 (1980).CrossRefGoogle Scholar
  18. 18.
    C. R. Woese and R. S. Wolfe, “The Bacteria, ” vol. 8 Academic Press Inc, New York (1985).Google Scholar
  19. 19.
    C. R. Woese, Archaebacteria and cellular origins: an overview, in: “Archaebacteria”, O. Kandier, ed., Gustav Fisher-Verlag, Stuttgart (1982).Google Scholar
  20. 20.
    M. De Rosa, S. De Rosa, A. Gambacorta, M. Cartenì-Farina and V. Zappia, The biosynthetic pathway of new polyamines in Caldariella acidophila, Biochem. J. 176: 1 (1978)PubMedGoogle Scholar
  21. 21.
    M. Porcelli, G. Cacciapuoti, M. Cartenì-Farina and A. Gambacorta, S-adenosylmethionine synthetase in the thermophilic archaebacterium Sulfolobus solafataricus: purification and characterization of two isoforms, Eur. J. Biochem. (1988), in press.Google Scholar
  22. 22.
    P. Galletti, M. De Rosa, A. Gambacorta, C. Manna, R. Festinese and V. Zappia, Protein methylation in Caldariella acidophila an extreme thermoacidophilic archaebacterium FEBS Lett. 124: 62 (1981).PubMedCrossRefGoogle Scholar
  23. 23.
    T. Oshima, Novel polyamines in Thermus thermophilus: isolation, identification, and chemical synthesis, in: “Methods in Enzymology”, H. Tabor and C. W. Tabor eds, vol. 94, Academic Press, New York (1983)Google Scholar
  24. 24.
    M. De Rosa, S. De Rosa, A. Gambacorta, M. Cartenì-Farina and V. Zappia, Occurrence and characterization of new polyamines in the extreme thermophile Caldariella acidophila, Biochim. Biophys. Res. Commun. 69: 253 (1976).CrossRefGoogle Scholar
  25. 25.
    M. Cartenì-Farina, M. Porcelli, G. Cacciapuoti, M. De Rosa A. Gambacorta, W. D. Grant and H. N. M. Ross, Polyamines in halophilic archaebacteria, FEMS Micrbiol. Lett. 28: 323 (1985).CrossRefGoogle Scholar
  26. 26.
    G. Cacciapuoti, M. Porcelli, M. Cartenì-Farina, A. Gambacorta and V. Zappia, Purification and characterization of propylamine transferase from Sulfolobus solfataricus an extreme thermophilic archaebacterium, Eur. J. Biochem. 161: 263 (1986).PubMedCrossRefGoogle Scholar
  27. 27.
    M. Cartenì-Farina, A. Oliva, G. Romeo, G. Napolitano, M. De Rosa, A. Gambacorta and V. Zappia, 5′-Methylthioadenosine phosphorylase from Caldariella acidophila: purification and properties, Eur. J. Biochem. 101: 317 (1979).CrossRefGoogle Scholar
  28. 28.
    H. Zuber, Comparative studies of thermophilic and mesophilic enzymes: objectives, problems, results, in: “Biochemistry of Thermophily,” S. N. Friedman, ed., Academic Press, New York (1978).Google Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Giovanna Cacciapuoti
    • 1
  • Marina Porcelli
    • 1
  • Agata Gambacorta
    • 1
    • 2
  • Teresa Romano
    • 1
  • Mario De Rosa
    • 1
  1. 1.Department of Biochemistry of MacromoleculesUniversity of Naples First Medical SchoolItaly
  2. 2.Institute for the Chemistry of Molecules of Biological InterestCNRNaplesItaly

Personalised recommendations