Inhibition of Ornithine or Arginine Decarboxylase as an Experimental Approach to African or American Trypanosomiasis

  • Peter P. McCann
  • Cyrus J. Bacchi
  • Alan J. Bitonti
  • Felipe Kierszenbaum
  • Albert Sjoerdsma
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 250)


One of the more rewarding areas of recent research in polyamines has been the elucidation of their role in protozoal growth (Pegg and McCann, 1982; 1988). The first indication of the impact that parasitic protozoa would have on the polyamine field was the discovery by Bacchi et al. (1980) that α-difluoromethylornithine (DFMO), a specific catalytic inhibitor of ornithine decarboxylase, would totally cure acute infections of the African trypanosome T. b. brucei in mice. This dramatic finding led to the remarkably swift use of DFMO in what would have been fatal cases of drug-resistant late-stage human sleeping sickness in Africa (Schechter et al., 1987).


Ornithine Decarboxylase Trypanosoma Cruzi Trypanosoma Brucei Polyamine Metabolism Arginine Decarboxylase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bacchi, C.J., Nathan, H.D., Hutner, S.H., McCann, P.P. and Sjoerdsma, A., 1980. Polyamine Metabolism: A Potential Therapeutic Target in Trypanosomes, Science, 210: 332–334.PubMedCrossRefGoogle Scholar
  2. Bacchi, C.J., Garofalo, J., Mockenhaupt, D., McCann, P.P., Diekema, K.A., Pegg, A.E., Nathan, H.C., Mullaney, E.A., Chunosoff, L., Sjoerdsma, A., and Hutner, S.H., 1983. In Vivo Effects of α-DL-Difluoromethylornithine on the Metabolism and Morphology of Trypanosoma Brucei Brucei. Molec. Biochem. Parasitol., 7: 209–225.CrossRefGoogle Scholar
  3. Bacchi, C.J., and McCann, P.P., 1987. Parasitic Protozoa and Polyamines, in Inhibition of Polyamine Metabolism: Biological Significance and Basis for New Therapies (P.P. McCann, A.E. Pegg and A. Sjoerdsma, eds.) Academic Press, Orlando, pp. 317–344.Google Scholar
  4. Bacchi, C.J., Garofalo, J., Santana, A., Hannan, J.C., Bitonti, A.J., and McCann, P.P., 1988. Trypanosoma brucei brucei: Induction of Ornithine Decarboxylase in Procyclic Forms. Submitted.Google Scholar
  5. Bitonti, A.J., Bacchi, C.J., McCann, P.P. and Sjoerdsma, A., 1986a. Uptake of α-Difluoromethylornithine by Trypanosoma brucei brucei. Biochem. Pharmacol., 35: 351–354.PubMedCrossRefGoogle Scholar
  6. Bitonti, A.J., McCann, P.P. and Sjoerdsma, A., 1986b. Necessity of Antibody Response in the Treatment of African Trypanosomiasis with α-Difluoromethylornithine. Biochem. Pharmacol., 35: 331–334.PubMedCrossRefGoogle Scholar
  7. Bitonti, A.J., Casara, P.J., McCann, P.P. and Bey, P., 1987. Catalytic Irreversible Inhibition of Bacterial and Plant Arginine Decarboxylase Activities by Novel Substrate and Product Analogs, Biochem. J., 242: 69–74.PubMedGoogle Scholar
  8. Bitonti, A.J., Cross-Doersen, D.E., and McCann, P.P., 1988. Effects of α-Difluoromethylornithine on Protein Synthesis and Synthesis of the Variant Specific Glycoprotein (VSG) in Trypanosoma brucei brucei. Biochem. J., 250: 295–298.PubMedGoogle Scholar
  9. Boothroyd, J.C., 1985. Antigenic Variation in African Trypanosomes. Ann. Rev. Microbiol., 39: 475–502.CrossRefGoogle Scholar
  10. deGee, A.L.W., McCann, P.P. and Mansfield, J.M., 1983. Role of Antibody in the Elimination of Trypanosomes after DL-α-Difluoromethylornithine Chemotherapy in Mice, J. Parasitol., 69: 818–822.CrossRefGoogle Scholar
  11. Fairlamb, A.H., Blackburn, P., Ulrich, P., Chait, B.T. and Cerami, A., 1985. Trypanothione: a novel bis(glutathionyl)spermidine cofactor for glutathione reductase in trypanosomatids. Science, 227: 1485–1487.PubMedCrossRefGoogle Scholar
  12. Fairlamb, A.H., Henderson, G.B., Bacchi, C.J. and Cerami, A., 1987. In Vivo Effects of Difluoromethylornithine on Trypanothione and Polyamine Levels in Bloodstream Forms of Trypanosoma brucei. Molec. Biochem. Parasitol., 24: 185–191.CrossRefGoogle Scholar
  13. Giffin, B.F., McCann, P.P., Bitonti, A.J. and Bacchi, C.J., 1986. Polyamine Depletion Following Exposure to DL-α-difluoromethylorni-thine both In Vivo and In Vitro Initiates Morphological Alterations and Mitochondrial Activation in a Monomorphic Strain of Trypanosoma brucei brucei. J. Protozool., 33: 238–243.PubMedGoogle Scholar
  14. Kierszenbaum, F., Wirth, J.J., McCann, P.P., and Sjoerdsma, A., 1987a. Impairment of Macrophage Function by Inhibitors of Ornithine Decarboxylase Activity, Infect. Immun., 55: 2461–2464.PubMedGoogle Scholar
  15. Kierszenbaum, F., Wirth, J.J., McCann, P.P., and Sjoerdsma, A., 1987b. Arginine Decarboxylase Inhibitors Reduce the Capacity of Trypanosoma cruzi to Infect and Multiply in Mammalian Host Cells, Proc. Nat.Acad. Sci. U.S.A., 84: 4278–4282.CrossRefGoogle Scholar
  16. Pegg, A.E. and McCann, P.P. 1982. Polyamine Metabolim and Function: A Review. Am. J. Physiol., 243: C212–C221.PubMedGoogle Scholar
  17. Pegg, A.E. and McCann, P.P. 1988. Polyamine Metabolism and Function in Mammalian Cells and Protozoans, I.S.I. Atlas of Science: Biochemistry,.1: 11–18.Google Scholar
  18. Phillips, M.A., Coffino, P., and Wang, C.C., 1987. Cloning and Sequencing of the Ornithine Decarboxylase Gene from Trypanosoma brucei. J. Bio. Chem., 262: 8721–8727.Google Scholar
  19. Rogers, S., Wells, R. and Rechsteiner, M., 1986. Amino Acid Sequences Common to Rapidly Degraded Proteins: The PEST Hypothesis. Science, 234: 364–368.PubMedCrossRefGoogle Scholar
  20. Rudkin, B.B., Mamont, P.S. and Seiler, N., 1984. Decreased Protein-Synthetic Activity Is an Early Consequence of Spermidine Depletion in Rat Hepatoma Tissue-Culture Cells. Biochem. J., 217: 731–741.PubMedGoogle Scholar
  21. Schechter, P.J., Barlow, J.L.R., and Sjoerdsma, A., 1987. Clinical Aspects of Inhibition of Ornithine Decarboxylase with Emphasis on Therapeutic Trials of Eflornithine (DFMO) in Cancer and Protozoan Diseases, in Inhibition of Polyamine Metabolism: Biological Significance and Basis for New Therapies (P.P. McCann, A.E. Pegg and A. Sjoerdsma, eds.) Academic Press, Orlando, pp. 345–364.Google Scholar
  22. Vickerman, K., 1969. On, the Surface Coat and Flagellar Adhesion in Trypanosomes. J. Cell Sci., 5: 163–193.PubMedGoogle Scholar
  23. Vickerman, K., 1978. Antigenic Variation In Trypanosomes. Nature, 273: 613–617.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Peter P. McCann
    • 1
  • Cyrus J. Bacchi
    • 2
  • Alan J. Bitonti
    • 1
  • Felipe Kierszenbaum
    • 3
  • Albert Sjoerdsma
    • 1
  1. 1.Merrell Dow Research InstituteCincinnatiUSA
  2. 2.Haskins Laboratories of Pace UniversityNew YorkUSA
  3. 3.Michigan State UniversityEast LansingUSA

Personalised recommendations