Advertisement

Mechanism of Antitumor Activity of Norspermidine, a Structural Homologue of Spermidine

  • Prasad S. Sunkara
  • John H. Zwolshen
  • Nellikunja J. Prakash
  • Terry L. Bowlin
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 250)

Abstract

The availability of α-difluoromethylornithine (DFMO), a specific and irreversible inhibitor of ornithine decarboxylase (ODC) made it possible to demonstrate an essential role for polyamines in cell proliferation and differentiation.1, 2, 3 Polyamine depletion induced by DFMO treatment in a number of in vitro and in vivo model systems resulted in growth retardation4, 5, 6 and cell death.7, 8 Further, the remarkable low toxicity of DFMO and its significant antitumor and antimetastatic activity in experimental tumor models7, 10, 11 suggested that approaches aimed at perturbing polyamine metabolism should be explored in identifying novel antitumor agents.

Keywords

HeLa Cell Ornithine Decarboxylase BeLa Cell Polyamine Metabolism Polyamine Biosynthesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. W. Metcalf, C. Danzin, M.T. Jung, P. Casara and J.P. Vevert, Catalytic Irreversible Inhibition of Mammalian Ornithine Decarboxylase by Substrate and Product Analogues. J. Am. Chem. Soc. 100: 2551, 1978.CrossRefGoogle Scholar
  2. 2.
    A. E. Pegg, and P.P. McCann, Polyamine Metabolism and Function: A Review. Am. J. Physiol. 243: 212, 1982.Google Scholar
  3. 3.
    P. S. Sunkara, and N.J. Prakash, Inhibitors of polyamine biosynthesis as antitumor and antimetastatic agents, in: Novel Approaches to Cancer Chemotherapy. P.S. Sunkara, ed., pp 93, Academic Press, New York (1982).Google Scholar
  4. 4.
    P. S. Mamont, M.C. Duchesne, J. Grove, and P. Bey, Antiproliferative Properties of D, L-α-difluoromethylornithine in Cultured Cells. A Consequence of Irreversible Inhibition of Ornithine Decarboxylase. Biochem. Biophys. Res. Commun. 81: 58 (1978).PubMedCrossRefGoogle Scholar
  5. 5.
    J. Seidenfeld, J.W. Gray, and L.J. Marton, Depletion of 9L Rat Brain Tumor Cell Polyamine Content by Treatment with D.L-α-difluoromethyl-orni thine Inhibits Proliferation and the G1 to s transition. Exp. Cell Res, 131: 209 (1981).PubMedCrossRefGoogle Scholar
  6. 6.
    P. S. Sunkara, S.K. Fowler, K. Nishioka, and P.N. Rao, Inhibition of Polyamine Biosynthesis by α-Difluoromethylornithine Potentiates the Cytotoxic Effects of Arabinosyl Cytosine in HeLa Cells. Biochem. Biophys. Res. Commun. 95: 423 (1980).PubMedCrossRefGoogle Scholar
  7. 7.
    G. D. Luk, G. Goodwin, L.J. Marton, and S.B. Baylin, Polyamines are Necessary for the Survival of Human Small-Cell Lung Carcinoma in Culture. Proc. Natl. Acad. Sci. USA, 78: 2355 (1981).PubMedCrossRefGoogle Scholar
  8. 8.
    P. S. Sunkara, C.C. Chang, N.J. Prakash, and P.J. Lachmann, Effect of Inhibition of Polyamine Biosynthesis by DL-α-difluoromethyl-ornithine on the Growth and Melanogenesis of B16 Melanoma in vitro and in vivo. Cancer Res. 45: 4067 (1985).PubMedGoogle Scholar
  9. 9.
    N. J. Prakash, P.J. Schechter, P.S. Mamont, J. Grove, J. Koch-Weser, and A. Sjoerdsma, Inhibition of EMT6 Tumor Growth by Interference with Polyamine Biosynthesis: Effects of α-difluoromethylornithine, an Irreversible Inhibitor of Ornithine Decarboxylase. Life Sci. 26: 181 (1980).PubMedCrossRefGoogle Scholar
  10. 10.
    P. S. Sunkara, N.J. Prakash, G.D. Mayer, and A. Sjoerdsma, Tumor Suppression with a Combination of a-difluoromethylornithine and Interferon. Science Wash.DC) 219: 851 (1983).CrossRefGoogle Scholar
  11. 11.
    P. S. Sunkara, N.J. Prakash, and A.L. Rosenberger, An Essential Role for Polyamines in Tumor Metastases. FEBS Lett. 150: 397 (1982).PubMedCrossRefGoogle Scholar
  12. 12.
    W. A. Knight, R.B. Livingston, C. Fabin, and J. Costanzi, Methylglyoxalbisguanylhydrazone (Methyl GAG, MGBG) in Advanced Human Malignancy. Proc. Am. Soc. Clin. Oncol. 20: 319 (1979).Google Scholar
  13. 13.
    C. Dave, and L. Caballeri, Studies on the Uptake of Methylglyoxal Bis(guanylhydrazone) (CH3-G) and Spermidine (SPd) in Mouse Leukemia L1210 Sensitive and Resistant to CH3-G. Fed. Proc. Fed. Am. Soc. Exp. Biol. 32: 763 (1973).Google Scholar
  14. 14.
    J. Janne, E. Holtta, A. Kallio, and K. Kapyaho, Role of Polyamines And Their Antimetabolites in Clinical Medicine. Special topics in: Endocrinology and Metabolism 5: 227 (1983).Google Scholar
  15. 15.
    C. W. Porter, and R.J. Bergeron, Spermidine Requirement for Cell Proliferation in Eukaryotic Cells. Structural Specificity and Quantitation. Science 219: 1083 (1983).PubMedCrossRefGoogle Scholar
  16. 16.
    C. W. Porter, J. McManis, R.A. Casero, and R.J. Bergeron, Relative Abilities of Bis(ethyl) Derivatives of Putrescine, Spermidine and Spermine to Regulate Polyamine Biosynthesis and Inhibit L1210 Leukemia Cell Growth. Cancer Res. 47: 2821 (1987).PubMedGoogle Scholar
  17. 17.
    N. J. Prakash, T.L. Bowlin, G.F. Davis, P.S. Sunkara, and A. Sjoerdsma, Antitumor Activity of Norspermidine, a Structural Analogue of the Natural Polyamine, Spermidine. Anticancer Res. (In press).Google Scholar
  18. 18.
    R. J. Mans, and G.D. Novelli, Measurement of the Incorporation of Radioactive Aminoacids into Protein by a Filter-paper Disk Method. Arch. Biochem. Biophys. 94: 48 (1961).CrossRefGoogle Scholar
  19. 19.
    M. M. Bradford, A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Proteins Utilizing the Principle of Protein-dye Binding. Anal. Biochem. 72: 248 (1976).PubMedCrossRefGoogle Scholar
  20. 20.
    T. L. Bowlin, B.J. McKown, and P.S. Sunkara, Ornithine Decarboxylase Induction and Polyamine Biosynthesis are Required for the Growth of Interleukin-2 and Interleukin-3 Dependent Cell Lines. Cellular Immunol. 98: 341 (1986).CrossRefGoogle Scholar
  21. 21.
    R. C. Williams, and J.C. Lee, Preparation of Tubulin From Brain. Methods in Enzy. 85: 376 (1982).CrossRefGoogle Scholar
  22. 22.
    F. Gaskin, C.R. Cantor, and M.L. Shelanski, Turbidimetic Studies of the In Vitro Assembly and Disassembly of Porcine Neurotubules. J. Mol. Biol. 89: 737 (1974).PubMedCrossRefGoogle Scholar
  23. 23.
    E. S. Canellakis, J.S. Heller, and D.A. Kyriakidis, The interaction of ornithine decarboxylase with its antizyme. in: Adv. Polyamine Res. 3: 1 (1981).Google Scholar
  24. 24.
    T. Kameji, and A.E. Pegg, Inhibition of Translation of mRNAs for Ornithine Decarboxylase and S-adenosylmethionine Decarboxylase by Polyamines. J. Biol. Chem. 262: 2427 (1987).PubMedGoogle Scholar
  25. 25.
    L. Alhonen-Hongisto, P. Seppanen, and J. Janne, Intracellular Putrescine and Spermidine Deprivation Induces Increased Uptake of the Natural Polyamines and Methylglyoxal Bis(guanylhydrazone). Biochem. J. 192: 941 (1980).PubMedGoogle Scholar
  26. 26.
    P. S. Sunkara, N.J. Prakash, C.C. Chang, and A. Sjoerdsma, Cytotoxicity of Methylglyoxal Bis(guanyl hydrazone) in Combination with a-difluoromethylornithine Against HeLa Cells and Mouse L1210 Leukemia. J. Natl. Cancer Inst. 40: 505 (1983).Google Scholar
  27. 27.
    M. H. Park, S.I. Chung, H.L. Colper, and J.E. Folk, The Mammalian Hypusine-containing Protein, Eukaryotic Initiation Factor 4D. J. Biol. Chem. 259: 4563 (1984).PubMedGoogle Scholar
  28. 28.
    M. Israel, E.C. Zoll, N. Muhammad, and E.J. Modest, Synthesis and Antitumor Evaluation of Presumed Cytotoxic Metabolites of Spermine and N, N1-bis(3-aminopropyl) Nonane-l, 9-diamine. J. Med. Chem. 16: 1 (1974).CrossRefGoogle Scholar
  29. 29.
    D. R. Morris, In Vivo Studies of the Roles of Putrescine and Spermidine in Escherichia coli. in: Polyamines in Biology and Medicine, D.R. Morris and L.J. Marton, eds, Marcel-Dekker, New York (1981).Google Scholar
  30. 30.
    C. W. Porter, J. McManis, R.A. Casero, and R.J. Bergeron, Relative Abilities of Bis(ethyl) Derivatives of Putrescine, Spermidine and Spermine to Regulate Polyamine Biosynthesis and Inhibit L1210 Leukemia Cell Growth. Cancer Res. 47: 2821 (1987).PubMedGoogle Scholar
  31. 31.
    L. T. Weinstock, W.J. Post, and C.C. Cheng, Synthesis of New Polyamine Derivatives for Cancer Chemotherapeutic Studies. J. Pharm. Sci. 70: 956 (1981).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Prasad S. Sunkara
    • 1
  • John H. Zwolshen
    • 1
  • Nellikunja J. Prakash
    • 1
  • Terry L. Bowlin
    • 1
  1. 1.Merrell Dow Research InstituteCincinnatiUSA

Personalised recommendations