Skip to main content

Mechanism of Antitumor Activity of Norspermidine, a Structural Homologue of Spermidine

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 250))

Abstract

The availability of α-difluoromethylornithine (DFMO), a specific and irreversible inhibitor of ornithine decarboxylase (ODC) made it possible to demonstrate an essential role for polyamines in cell proliferation and differentiation.1, 2, 3 Polyamine depletion induced by DFMO treatment in a number of in vitro and in vivo model systems resulted in growth retardation4, 5, 6 and cell death.7, 8 Further, the remarkable low toxicity of DFMO and its significant antitumor and antimetastatic activity in experimental tumor models7, 10, 11 suggested that approaches aimed at perturbing polyamine metabolism should be explored in identifying novel antitumor agents.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. W. Metcalf, C. Danzin, M.T. Jung, P. Casara and J.P. Vevert, Catalytic Irreversible Inhibition of Mammalian Ornithine Decarboxylase by Substrate and Product Analogues. J. Am. Chem. Soc. 100: 2551, 1978.

    Article  CAS  Google Scholar 

  2. A. E. Pegg, and P.P. McCann, Polyamine Metabolism and Function: A Review. Am. J. Physiol. 243: 212, 1982.

    Google Scholar 

  3. P. S. Sunkara, and N.J. Prakash, Inhibitors of polyamine biosynthesis as antitumor and antimetastatic agents, in: Novel Approaches to Cancer Chemotherapy. P.S. Sunkara, ed., pp 93, Academic Press, New York (1982).

    Google Scholar 

  4. P. S. Mamont, M.C. Duchesne, J. Grove, and P. Bey, Antiproliferative Properties of D, L-α-difluoromethylornithine in Cultured Cells. A Consequence of Irreversible Inhibition of Ornithine Decarboxylase. Biochem. Biophys. Res. Commun. 81: 58 (1978).

    Article  PubMed  CAS  Google Scholar 

  5. J. Seidenfeld, J.W. Gray, and L.J. Marton, Depletion of 9L Rat Brain Tumor Cell Polyamine Content by Treatment with D.L-α-difluoromethyl-orni thine Inhibits Proliferation and the G1 to s transition. Exp. Cell Res, 131: 209 (1981).

    Article  PubMed  CAS  Google Scholar 

  6. P. S. Sunkara, S.K. Fowler, K. Nishioka, and P.N. Rao, Inhibition of Polyamine Biosynthesis by α-Difluoromethylornithine Potentiates the Cytotoxic Effects of Arabinosyl Cytosine in HeLa Cells. Biochem. Biophys. Res. Commun. 95: 423 (1980).

    Article  PubMed  CAS  Google Scholar 

  7. G. D. Luk, G. Goodwin, L.J. Marton, and S.B. Baylin, Polyamines are Necessary for the Survival of Human Small-Cell Lung Carcinoma in Culture. Proc. Natl. Acad. Sci. USA, 78: 2355 (1981).

    Article  PubMed  CAS  Google Scholar 

  8. P. S. Sunkara, C.C. Chang, N.J. Prakash, and P.J. Lachmann, Effect of Inhibition of Polyamine Biosynthesis by DL-α-difluoromethyl-ornithine on the Growth and Melanogenesis of B16 Melanoma in vitro and in vivo. Cancer Res. 45: 4067 (1985).

    PubMed  CAS  Google Scholar 

  9. N. J. Prakash, P.J. Schechter, P.S. Mamont, J. Grove, J. Koch-Weser, and A. Sjoerdsma, Inhibition of EMT6 Tumor Growth by Interference with Polyamine Biosynthesis: Effects of α-difluoromethylornithine, an Irreversible Inhibitor of Ornithine Decarboxylase. Life Sci. 26: 181 (1980).

    Article  PubMed  CAS  Google Scholar 

  10. P. S. Sunkara, N.J. Prakash, G.D. Mayer, and A. Sjoerdsma, Tumor Suppression with a Combination of a-difluoromethylornithine and Interferon. Science Wash.DC) 219: 851 (1983).

    Article  CAS  Google Scholar 

  11. P. S. Sunkara, N.J. Prakash, and A.L. Rosenberger, An Essential Role for Polyamines in Tumor Metastases. FEBS Lett. 150: 397 (1982).

    Article  PubMed  CAS  Google Scholar 

  12. W. A. Knight, R.B. Livingston, C. Fabin, and J. Costanzi, Methylglyoxalbisguanylhydrazone (Methyl GAG, MGBG) in Advanced Human Malignancy. Proc. Am. Soc. Clin. Oncol. 20: 319 (1979).

    Google Scholar 

  13. C. Dave, and L. Caballeri, Studies on the Uptake of Methylglyoxal Bis(guanylhydrazone) (CH3-G) and Spermidine (SPd) in Mouse Leukemia L1210 Sensitive and Resistant to CH3-G. Fed. Proc. Fed. Am. Soc. Exp. Biol. 32: 763 (1973).

    Google Scholar 

  14. J. Janne, E. Holtta, A. Kallio, and K. Kapyaho, Role of Polyamines And Their Antimetabolites in Clinical Medicine. Special topics in: Endocrinology and Metabolism 5: 227 (1983).

    CAS  Google Scholar 

  15. C. W. Porter, and R.J. Bergeron, Spermidine Requirement for Cell Proliferation in Eukaryotic Cells. Structural Specificity and Quantitation. Science 219: 1083 (1983).

    Article  PubMed  CAS  Google Scholar 

  16. C. W. Porter, J. McManis, R.A. Casero, and R.J. Bergeron, Relative Abilities of Bis(ethyl) Derivatives of Putrescine, Spermidine and Spermine to Regulate Polyamine Biosynthesis and Inhibit L1210 Leukemia Cell Growth. Cancer Res. 47: 2821 (1987).

    PubMed  CAS  Google Scholar 

  17. N. J. Prakash, T.L. Bowlin, G.F. Davis, P.S. Sunkara, and A. Sjoerdsma, Antitumor Activity of Norspermidine, a Structural Analogue of the Natural Polyamine, Spermidine. Anticancer Res. (In press).

    Google Scholar 

  18. R. J. Mans, and G.D. Novelli, Measurement of the Incorporation of Radioactive Aminoacids into Protein by a Filter-paper Disk Method. Arch. Biochem. Biophys. 94: 48 (1961).

    Article  CAS  Google Scholar 

  19. M. M. Bradford, A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Proteins Utilizing the Principle of Protein-dye Binding. Anal. Biochem. 72: 248 (1976).

    Article  PubMed  CAS  Google Scholar 

  20. T. L. Bowlin, B.J. McKown, and P.S. Sunkara, Ornithine Decarboxylase Induction and Polyamine Biosynthesis are Required for the Growth of Interleukin-2 and Interleukin-3 Dependent Cell Lines. Cellular Immunol. 98: 341 (1986).

    Article  CAS  Google Scholar 

  21. R. C. Williams, and J.C. Lee, Preparation of Tubulin From Brain. Methods in Enzy. 85: 376 (1982).

    Article  CAS  Google Scholar 

  22. F. Gaskin, C.R. Cantor, and M.L. Shelanski, Turbidimetic Studies of the In Vitro Assembly and Disassembly of Porcine Neurotubules. J. Mol. Biol. 89: 737 (1974).

    Article  PubMed  CAS  Google Scholar 

  23. E. S. Canellakis, J.S. Heller, and D.A. Kyriakidis, The interaction of ornithine decarboxylase with its antizyme. in: Adv. Polyamine Res. 3: 1 (1981).

    CAS  Google Scholar 

  24. T. Kameji, and A.E. Pegg, Inhibition of Translation of mRNAs for Ornithine Decarboxylase and S-adenosylmethionine Decarboxylase by Polyamines. J. Biol. Chem. 262: 2427 (1987).

    PubMed  CAS  Google Scholar 

  25. L. Alhonen-Hongisto, P. Seppanen, and J. Janne, Intracellular Putrescine and Spermidine Deprivation Induces Increased Uptake of the Natural Polyamines and Methylglyoxal Bis(guanylhydrazone). Biochem. J. 192: 941 (1980).

    PubMed  CAS  Google Scholar 

  26. P. S. Sunkara, N.J. Prakash, C.C. Chang, and A. Sjoerdsma, Cytotoxicity of Methylglyoxal Bis(guanyl hydrazone) in Combination with a-difluoromethylornithine Against HeLa Cells and Mouse L1210 Leukemia. J. Natl. Cancer Inst. 40: 505 (1983).

    Google Scholar 

  27. M. H. Park, S.I. Chung, H.L. Colper, and J.E. Folk, The Mammalian Hypusine-containing Protein, Eukaryotic Initiation Factor 4D. J. Biol. Chem. 259: 4563 (1984).

    PubMed  CAS  Google Scholar 

  28. M. Israel, E.C. Zoll, N. Muhammad, and E.J. Modest, Synthesis and Antitumor Evaluation of Presumed Cytotoxic Metabolites of Spermine and N, N1-bis(3-aminopropyl) Nonane-l, 9-diamine. J. Med. Chem. 16: 1 (1974).

    Article  Google Scholar 

  29. D. R. Morris, In Vivo Studies of the Roles of Putrescine and Spermidine in Escherichia coli. in: Polyamines in Biology and Medicine, D.R. Morris and L.J. Marton, eds, Marcel-Dekker, New York (1981).

    Google Scholar 

  30. C. W. Porter, J. McManis, R.A. Casero, and R.J. Bergeron, Relative Abilities of Bis(ethyl) Derivatives of Putrescine, Spermidine and Spermine to Regulate Polyamine Biosynthesis and Inhibit L1210 Leukemia Cell Growth. Cancer Res. 47: 2821 (1987).

    PubMed  CAS  Google Scholar 

  31. L. T. Weinstock, W.J. Post, and C.C. Cheng, Synthesis of New Polyamine Derivatives for Cancer Chemotherapeutic Studies. J. Pharm. Sci. 70: 956 (1981).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Sunkara, P.S., Zwolshen, J.H., Prakash, N.J., Bowlin, T.L. (1988). Mechanism of Antitumor Activity of Norspermidine, a Structural Homologue of Spermidine. In: Zappia, V., Pegg, A.E. (eds) Progress in Polyamine Research. Advances in Experimental Medicine and Biology, vol 250. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5637-0_62

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5637-0_62

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5639-4

  • Online ISBN: 978-1-4684-5637-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics