Fluorine-Containing Polyamines: Biochemistry and Potential Applications

  • Pierre S. Mamont
  • Nicole Claverie
  • Fritz Gerhart
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 250)


Polyamine metabolism and its significance in diseases characterized by rapid cell proliferation have been reviewed recently.1, 2 These reviews emphasize the importance of the polyamine biosynthetic pathway as a promising target for the design of new therapeutic agents and summarize the progress made in the field.


Ornithine Decarboxylase Cloning Efficiency Polyamine Metabolism Polyamine Content Polyamine Analogue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A.E. Pegg, Polyamine metabolism and its importance in neoplastic growth and as a target for chemotherapy, Cancer Res. 48: 759 (1988).PubMedGoogle Scholar
  2. 2.
    P.P. McCann, A.E. Pegg, and A. Sjoerdsma, “Inhibition of Polyamine Metabolism, Biological Significance and Basis for New Therapies”, Academic Press Inc., Orlando (1987).Google Scholar
  3. 3.
    N. Seiler, Functions of polyamine acetylation, Can. J. Physiol.Pharmacol. 65: 2024 (1987).PubMedCrossRefGoogle Scholar
  4. 4.
    C.J. Bacchi, and P.P. McCann, Parasitic protozoa and polyamines, in: “Inhibition of Polyamine Metabolism, Biological Significance and Basis for New Therapies”, P.P. McCann, A.E. Pegg, and A. Sjoerdsma, eds., Academic Press Inc., Orlando, pp. 317–344 (1987).Google Scholar
  5. 5.
    P.S. Sunkara, and S.B. Baylin, Inhibitors of polyamine biosynthesis: cellular and in vivo effects on tumor proliferation, in: “Inhibition of Polyamine Metabolism, Biological Significance and Basis of New Therapies”, P.P. McCann, A.E. Pegg, and A. Sjoerdsma, eds., Academic Press Inc., Orlando, pp. 121–140 (1987).Google Scholar
  6. 6.
    J. Bartholeyns, P. Mamont, and P. Casara, Antitumor properties of (2R, 5R)-6-heptyne-2.5-diamine, a new potent enzyme-activated irreversible inhibitor of ornithine decarboxylase in rodents, Cancer Res. 44: 4972 (1984).PubMedGoogle Scholar
  7. 7.
    N. Claverie, J.-L. Pasquali, P.S. Mamont, C. Danzin, M. Weil-Bousson, and M. Siat, Immunosuppressive effects of (2R, 5R)-6-heptyne-2, 5-diamine, and inhibitor of polyamine synthesis. II. Beneficial effects on the development of a lupus-like disease in MRL-lpr/lpr mice, Clin. Exp. Immunol. 72: 293 (1988).PubMedGoogle Scholar
  8. 8.
    P.J. Schechter, J.L.R. Barlow, and A. Sjoerdsma, Clinical aspects of inhibition of ornithine decarboxylase with emphasis on therapeutic trials of eflornithine (DFMO) in cancer and protozoan diseases, in: “Inhibition of Polyamine Metabolism, Biological Significance and Basis of New Therapies”, P.P. McCann, A.E. Pegg, and A. Sjoerdsma, eds., Academic Press Inc., Orlando, pp. 345–364 (1987).Google Scholar
  9. 9.
    P.S. Mamont, M.-C. Duchesne, A.-M. Joder-Ohlenbusch, and J. Grove, Effects of ornithine decarboxylase inhibitors on cultured cells, in: “Enzyme-Activated Irreversible Inhibitors”, N. Seiler, M.J. Jung, and J. Koch-Weser eds., Elsevier/North Holland Biochemical Press, Amsterdam, pp. 43–54 (1978).Google Scholar
  10. 10.
    C. Danzin, P. Casara, N. Claverie, B.W. Metcalf, and M.J. Jung, (2R, 5R)-6-heptyne-2, 5-diamine, an extremely potent inhibitor of mammalian ornithine decarboxylase, Biochem. Biophys. Res. Commun. 116: 237 (1983).PubMedCrossRefGoogle Scholar
  11. 11.
    P.S. Mamont, M. Siat, A.-M. Joder-Ohlenbusch, A. Bernhardt, and P. Casara, Effects of [2R, 5R]-6-heptyne-2, 5-diamine, a potent inhibitor of L-ornithine decarboxylase, on rat hepatoma cells cultured in vitro. Eur. J. Biochem. 142: 457 (1984).PubMedCrossRefGoogle Scholar
  12. 12.
    P. Bey, F. Gerhart, V. Van Dorsselaer, and C. Danzin, α-(fluoro-methyl) dehydroornithine and α-(fluoromethyl) dehydroputrescine analogues as irreversible inhibitors of ornithine decarboxylase, J. Med. Chem. 26: 1551 (1983).PubMedCrossRefGoogle Scholar
  13. 13.
    P.S. Mamont, C. Danzin, M. Kolb, F. Gerhart, P. Bey, and A. Sjoerdsma, Narked and prolonged inhibition of mammalian ornithine decarboxylase in vivo by esters of (E)-2-(fluoromethyl) dehydroornithine, Biochem. Pharmacol. 35: 159 (1986).PubMedCrossRefGoogle Scholar
  14. 14.
    A.E. Pegg and D.B. Jones, J.A. Secrits III, Effects of inhibitors of S-adenosylmethionine decarboxylase on polyamine content and growth of L1210 cells, Biochem. 27: 1408 (1988).CrossRefGoogle Scholar
  15. 15.
    D.M. Pett, and H.S. Ginsberg, Metabolism of polyamines in KB cells, Fed. Proc. 27: 615 (1968).Google Scholar
  16. 16.
    J.E. Kay, and V.J. Lindsay, Control of ornithine decarboxylase activity in stimulated human lymphocytes by putrescine and spermidine, Biochem. J. 132: 791 (1973).PubMedGoogle Scholar
  17. 17.
    J. Jänne, H. Pösö, and A. Raina, Polyamines in rapid growth and cancer, Biochem. Biophys. Acta 473: 241 (1978).PubMedGoogle Scholar
  18. 18.
    O. Heby, and J. Jänne, Polyamine antimetabolites: Biochemistry, specificity, and biological effects of inhibitors of polyanine synthesis, in.: “Polyamines in Biology and Medicine”, D.R. Morris, and L.J. Marton, eds., Marcel Dekker, New York, pp. 243–310, (1981).Google Scholar
  19. 19.
    P.S. Mamont, A.-M. Joder-Ohlenbusch, M. Nussli, and J. Grove, Indirect evidence for a strict negative control of S-adenosyl-L-methionine decarboxylase by spermidine in rat hepatoma cells, Biochem. J. 196: 411 (1981).PubMedGoogle Scholar
  20. 20.
    C.W. Porter, B. Ganis, T. Vinson, L.J. Marton, D.L. Kramer, and R. Bergeron, Comparison and characterization of growth inhibition in L1210 cells by α-difluoromethylornithine, an inhibitor of ornithine decarboxylase, and N1, N8-Bis(ethyl)spermidine, an apparent regulator of the enzyme, Cancer Res. 46: 6279 (1986).PubMedGoogle Scholar
  21. 21.
    C.W. Porter, J. McManis, R.A. Casero, and R. Bergeron, Relative abilities of bis (ethyl) derivatives of putrescine, spermidine and spermine to regulate polyarnine biosynthesis and inhibit L1210 leukemia cell growth, Cancer Res. 47: 2821 (1987).PubMedGoogle Scholar
  22. 22.
    J.C. Baillon, P.S. Mamont, J. Wagner, F. Gerhart, and P. Lux, Fluorinated analogues of spermidine as substrates of spermine synthase, Eur. J. Biochem., in press.Google Scholar
  23. 23.
    R.D. Chambers, The influence of fluorine or fluorocarbon groups on some reaction centres, in.: “Fluorine Organic Chemistry”, R.D. Chambers, ed., John Wiley and Sons, New York, pp. 64–96, (1973).Google Scholar
  24. 24.
    A.E. Pegg, Recent advances in the biochemistry of polyamines in eu-karyotes, Biochem. J., 234: 249 (1986).PubMedGoogle Scholar
  25. 25.
    L. Persson, I. Holm, and O. Heby, Regulation of ornithine decarboxylase mRNA translation by polyamines, J. Biol. Chem. 263: 3528 (1988).PubMedGoogle Scholar
  26. 26.
    T. Karaeji, and A.E. Pegg, Inhibition of translation of mRNAs for ornithine decarboxylase and S-adenosyl methionine decarboxylase by polyamines, J. Biol. Chem. 262: 2427 (1987).Google Scholar
  27. 27.
    A.E. Pegg, and J.K. Coward, Growth of mammalian cells in the absence of the accumulation of spermine. Biochem. Biophys. Res. Commun. 133: 82 (1985).PubMedCrossRefGoogle Scholar
  28. 28.
    S. Sarhan, B. Knödgen, F. Gerhart, and N. Seiler, Chain-fluorinated polyamines as tumor markers. I. In vivo transformation of 2, 2-di-fluoroputrescine into 6, 6-difluorospermidine and 6, 6-difluoro-spermine, Int. J. Biochem. 19: 843 (1987).Google Scholar
  29. 29.
    F. Dezeure, S. Sarhan, and N. Seiler, Chain-fluorinated polyamines as tumor markers. IV. Comparison of 2-fluoroputrescine and 2, 2-difluoroputrescine as substrates of spermine synthase in vitro and in vivo, Int. J. Biochem., submitted for publication.Google Scholar
  30. 30.
    W.E. Hull, W. Kuntz, R.E. Port, and N. Seiler, Chain-fluorinated polyamines as tumor markers. III. Determination of geminal difluoropolyamines and their precursor 2, 2-difluoroputrescine in normal tissues and experimental tumors by in vitro and in vivo 19F-NMR spectroscopy, NMR in Biomed., in press.Google Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Pierre S. Mamont
    • 1
  • Nicole Claverie
    • 1
  • Fritz Gerhart
    • 1
  1. 1.Merrell Dow Research InstituteStrasbourg CedexFrance

Personalised recommendations