Modifications of Ornithine Decarboxylase Induced by Phosphatases

  • J. L. A. Mitchell
  • M. F. Hicks
  • H. J. Chen
  • J. A. Hoff
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 250)


The sensitivity with which a tissue regulates polyamine biosynthesis during normal growth, development and hormone response has long been appreciated, but not well understood. In particular, the activity of the initial enzyme in this pathway, ornithine decarboxylase (ODC), appears to be subject to many cellular regulatory signals. Through recent advances in cDNA probes for ODC mRNA, and the use of radioactively labeled DFMO to tag ODC, along with the isolation and use of monospecific antibodies, great progress has been made in our understanding of the control of ODC synthesis at the levels of transcription and translation. However, this enzyme protein is also noted for its unusual instability (T1/2 can be less than 20 min) in mammalian tissues, and therefore the factors influencing this instability must also be considered if we are to gain complete understanding of the observed rapid modulation of cellular ODC activity. Unfortunately very little is known about how a cell may rapidly target and specifically degrade such a protein. This process must be of great significance, as this extreme enzyme instability is not common among cellular proteins, yet it is a feature shared by many proto-oncogene products.


Casein Kinase Ornithine Decarboxylase Mouse Kidney Crude Homogenate Ornithine Decarboxylase Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. V. Isomaa, A. E. I. Pajunen, C. W. Bardin and O. A. Janne, Ornithine decarboxylase in mouse kidney. Purification, characterization and radioimmunological determination of the enzyme protein, J. Biol. Chem. 258: 6735–6740 (1983).PubMedGoogle Scholar
  2. 2.
    J. E. Seely, H. Poso and A. E. Pegg, Effect of androgens on turnover of ornithine decarboxylase in mouse kidney, J. Biol. Chem. 257: 7549–7553 (1982).PubMedGoogle Scholar
  3. 3.
    B. L. M. Hogan, A. McIlhinney and S. Murden, Effect of growth conditions on the activity of ornithine decarboxylase in cultured hepatoma cells. Effect of serum and insulin, J. Cell. Physiol. 83: 353–358 (1973).CrossRefGoogle Scholar
  4. 4.
    C. A. Rinehart and E. S. Canellakis, Induction of ornithine decarboxylase activity by insulin and growth factors is mediated by amino acids, Proc. Nat. Acad. Sci. USA 82: 4365–4368 (1985).PubMedCrossRefGoogle Scholar
  5. 5.
    M. Costa, M. Meloni and M. K. Jones, Regulation of ornithine decarboxylase activity by amino acids, cyclic AMP and luteinizing hormone in cultured mammalian cells, Biochim. Biophys. Acta 608: 398–408 (1980).PubMedGoogle Scholar
  6. 6.
    D. A. Sens, J. H. Levine and M. G. Buse, Stimulation of hepatic and renal ornithine decarboxylase activity by selected amino acids, Metabolism 32: 787–792 (1983).PubMedCrossRefGoogle Scholar
  7. 7.
    O. Black and B. K. Chang, Ornithine decarboxylase enzyme activity in human and hamster pancreatic tumor cell lines, Cancer Lett. 17: 87–93 (1982).PubMedCrossRefGoogle Scholar
  8. 8.
    H. Poso, E. Karvonen, H. Suomalainen and L. C. Andersson, A human neuroblastoma cell line with an altered ornithine decarboxylase, J. Biol. Chem. 259: 12307–12310 (1984).PubMedGoogle Scholar
  9. 9.
    E. Karvonen, L. C. Andersson and H. Poso, A human neuroblastoma cell line with a stable ornithine decarboxylase in vivo and in vitro, Biochem. Biophys. Res. Commun. 126: 96–102 (1985).PubMedCrossRefGoogle Scholar
  10. 10.
    T. G. O’Brien, T. Madara, J. A. Pyle and M. Holmes, Ornithine decarboxylase from mouse epidermis and epidermal papillomas: Differences in enzymatic properties and structure, Proc. Nat. Acad. Sci. USA 83: 9448–9452 (1986).PubMedCrossRefGoogle Scholar
  11. 11.
    M. L. Pritchard, A. E. Pegg and L. S. Jefferson, Ornithine decarboxylase from hepatoma cells and a varient cell line in which the enzyme is more stable, J. Biol. Chem. 257: 5892–5899 (1982).PubMedGoogle Scholar
  12. 12.
    J. L. A. Mitchell, P. Qasba, and D. W. Mahan, Alternative charge states of mammalian ornithine decarboxylase and their polyamine-induced inactivation, in: “Recent Progress in Polyamine Res,” L. Selmeci, M. E. Brosnan and N. Seiler, eds., Akademiai Kiado, Budapest and VNU, (1985).Google Scholar
  13. 13.
    J. L. A. Mitchell, D. W. Mahan, P. P. McCann and P. Qasba, Dicyclohexylamine effects on HTC cell polyamine content and ornithine decarboxylase activity, Biochim. Biophys. Acta 840: 309–316 (1985).PubMedCrossRefGoogle Scholar
  14. 14.
    J. L. A. Mitchell, P. Qasba, R. E. Stofko and M. A. Franzen, Ornithine decarboxylase modification and polyamine-stimulated enzyme inactivation in HTC cells, Biochem. J. 228: 297–308 (1985).PubMedGoogle Scholar
  15. 15.
    L. Persson, J. E. Seely and A. E. Pegg, Investigation of structure and rate of synthesis of ornithine decarboxylase protein in mouse kidney, Biochemistry 23: 3777–3783 (1984).PubMedCrossRefGoogle Scholar
  16. 16.
    R. H. Davis, G. N. Krasner, J. J. DiGangi and J. L. Ristow, Distinct roles of putrescine and spermidine in the regulation of ornithine decarboxylase in Neurospora crassa, Proc. Nat. Acad. Sci. USA 82: 4105–4109 (1985).PubMedCrossRefGoogle Scholar
  17. 17.
    E. Holtta and P. Pohjanpelto, Control of ornithine decarboxylase in Chinese hamster ovary cells by polyamines, J. Biol. Chem. 261: 9502–9508 (1986).PubMedGoogle Scholar
  18. 18.
    J. R. Glass and E. W. Gerner, Spermidine mediates degradation of ornithine decarboxylase by a non-lysosomal, ubiquitin-independent mechanism, J. Cell. Phvsiol. 130: 133–141 (1987).CrossRefGoogle Scholar
  19. 19.
    Y. Murakami and S. Hayashi, Role of antizyme in degradation of ornithine decarboxylase in HTC cells, Biochem. J. 226: 893–896 (1985).PubMedGoogle Scholar
  20. 20.
    W. F. Fong, J. S. Heller and E. S. Canellakis, The appearance of an ornithine decarboxylase inhibitory protein upon the addition of putrescine to cell cultures, Biochim. Biophys. Acta 428: 456–465 (1976).PubMedCrossRefGoogle Scholar
  21. 21.
    J. S. Heller and E. S. Canellakis, Cellular control of ornithine decarboxylase activity by its antizyme, J. Cell. Phys. 107: 209–217 (1981).CrossRefGoogle Scholar
  22. 22.
    E. S. Canellakis, D. A. Kyriakidis, C. A. Rinehart, S. C. Huang, C. Panagiotidis and W. F. Fong, Regulation of polyamine biosynthesis by antizyme and some recent developments relating the induction of polyamine biosynthesis to cell growth, Bioscience Reports 5: 189–204 (1985).PubMedCrossRefGoogle Scholar
  23. 23.
    K. Fujita, Y. Murakami, T. Kamaji, S. Matsufuji, K. Utsunomiya, R. Kanamoto and S. Hayashi, Regulation of hepatic ornithine decarboxylase by antizyme and antizyme inhibitor, Adv. Polyamine Res. 4: 683–691 (1983).Google Scholar
  24. 24.
    K. Fujita, S. Matsufuji, Y. Murakami and S. Hayashi, Antizyme to ornithine decarboxylase is present in the liver of starved rats, Biochem. J. 218: 557–562 (1984).PubMedGoogle Scholar
  25. 25.
    P. H. Laitinen, R. L. Huhtinen, O. A. Hietala and A. E. I. Pajunen, Ornithine decarboxylase activity in brain regulated by a specific macromolecule, the antizyme, J. Neurochem. 44: 1885–1891 (1985).PubMedCrossRefGoogle Scholar
  26. 26.
    Y. Murakami, M. Marumo and S. Hayashi, Existence of antizyme and ornithine decarboxylase-antizyme complex in RK13 kidney cells, FEBS Lett. 199: 49–52 (1986).PubMedCrossRefGoogle Scholar
  27. 27.
    T. Kitani and H. Fujisawa, Purification and some properties of a protein inhibitor (antizyme) in ornithine decarboxylase from rat liver, J. Biol. Chem. 259: 10036–10040 (1984).PubMedGoogle Scholar
  28. 28.
    S. I. Hayashi, T. Kameji, K. Fujita, Y. Murakami, R. Kanamoto, K. Utsunomiya, S. Matsufuji, M. Takiguchi, M. Mori and M. Tatibana, Molecular mechanism for the regulation of hepatic ornithine decarboxylase, Adv. Enz. Reg. 23: 311–329 (1985).CrossRefGoogle Scholar
  29. 29.
    P. H. Laitinen, Involvement of an “antizyme” in the inactivation of ornithine decarboxylase, J. Neurochem. 45: 1303–1307 (1985).PubMedCrossRefGoogle Scholar
  30. 30.
    A. Hershko and A. Ciechanover, Mechanisms of intracellular protein breakdown, Ann. Rev. Biochem. 51: 335–364 (1982).PubMedCrossRefGoogle Scholar
  31. 31.
    S. Rogers, R. Wells and M. Rechsteiner, Amino acid sequences common to rapidly degraded proteins: The PEST hypothesis, Science 234: 364–367 (1986).PubMedCrossRefGoogle Scholar
  32. 32.
    A. Bachmair, D. Finley and A. Varshavsky, In Vivo Half-Life of a Protein Is a Function of Its Amino-Terminal Residue, Science 234: 179–234 (1986).PubMedCrossRefGoogle Scholar
  33. 33.
    J. M. Thornton and B. L. Sibanda, Amino and carboxy-terminal regions in globular proteins, J. Mol. Biol. 167: 443–460 (1983).PubMedCrossRefGoogle Scholar
  34. 34.
    M. F. Obenrader and W. F. Prouty, Detection of multiple forms of rat liver ornithine decarboxylase, J. Biol. Chem. 252: 2860–2865 (1976).Google Scholar
  35. 35.
    D. Loeb, P. W. Houben and L. P. Bullock, Two forms of ornithine decarboxylase activity in mouse kidney, Molec. Cell. Endocrin. 38: 67–73 (1984).CrossRefGoogle Scholar
  36. 36.
    T. Kitani and H. Fujisawa, Strain-specific occurrence of two ornithine decarboxylase species in mouse kidney, Biochem. Biophys. Res. Commun. 151: 450–457 (1988).PubMedCrossRefGoogle Scholar
  37. 37.
    C. Lau and T. A. Slotkin, Regulation of rat heart ornithine decarboxylase: change in affinity for ornithine evoked by neuronal, hormonal, and ontogenetic stimuli, Molec. Pharm. 16: 504–512 (1979).PubMedGoogle Scholar
  38. 38.
    E. Gravela, M. F. Zuretti and O. Brossa, Studies on ornithine decarboxylase from liver, kidney and tumoral tissues during activity decay following cycloheximide administration, Cell Biol. Interl. Rep. 11: 573–582 (1987).CrossRefGoogle Scholar
  39. 39.
    J. L. A. Mitchell, M. D. Rynning, H. J. Chen and M. F. Hicks, Interrelation between the charge isoforms of mammalian ornithine decarboxylase, Arch. Biochem. Biophys. 260: 585–594 (1988).PubMedCrossRefGoogle Scholar
  40. 40.
    M. A. Pereira, R. E. Savage and C. Guion, Induction by chloroform of two forms of ornithine decarboxylase in rat liver, Biochem. Pharmacol. 32: 2511–2514 (1983).PubMedCrossRefGoogle Scholar
  41. 41.
    J. F. Richards, K. Lit, R. Fuca and C. Bourgeault, Multiple species of ornithine decarboxylase in rat tissues: Effects of dexamethasone, Biochem. Biophys. Res. Commun. 99: 1461–1467 (1981).PubMedCrossRefGoogle Scholar
  42. 42.
    J. L. A. Mitchell and G. K. Mitchell, Ornithine decarboxylase protein diversity and activity modulation in HTC cells, Biochem. Biophys. Res. Commun. 105: 1189–1197 (1982).PubMedCrossRefGoogle Scholar
  43. 43.
    J.E. Seely, L. Persson, G. J. Sertich and A. E. Pegg, Comparison of ornithine decarboxylase from rat liver, rat hepatoma and mouse kidney, Biochem. J. 226: 577–586 (1985).PubMedGoogle Scholar
  44. 44.
    V. J. Atmar and G. D. Kuehn, Phosphorylation of ornithine decarboxylase by a polyamine-dependent protein kinase, Proc. Nat. Acad. Sci. USA 78: 5518–5522 (1981).PubMedCrossRefGoogle Scholar
  45. 45.
    J. E. Seely, D. A. Stetler, S. T. Jacob and A. E. Pegg, Absence of inactivation or phosphorylation of ornithine decarboxylase by nuclear protein kinase NII and of immunological cross-reactivity between RNA polymerase I and ornithine decarboxylase, Biochem. Biophys. Res. Commun. 120: 219–225 (1984).PubMedCrossRefGoogle Scholar
  46. 46.
    F. Meggio, F. Flamigni, C. M. Calderera, C. Guarnieri and L. A. Pinna, Phosphorylation of rat heart ornithine decarboxylase by type-2 casein kinase, Biochem. Biophys. Res. Commun. 122: 997–1004 (1984).PubMedCrossRefGoogle Scholar
  47. 47.
    F. Meggio, F. Flamigni, C. Guarnieri and A. L. Pinna, Location of the phosphorylation site for casein kinase-2 within the amino acid sequence of ornithine decarboxylase, Biochim. Biophys. Acta 929: 114–116 (1987).PubMedCrossRefGoogle Scholar
  48. 48.
    L. A. Pinna, F. Flamigni, F. Meggio, C. Guarnieri and C. M. Caldarera, Phosphorylation of ornithine decarboxylase by casein kinase-2: A signal for proteolytic degradation?, in: “Biomedical Studies of Natural Polyamines,” C. M. Caldarera, C. Clo and C. Guarnieri, eds., Cooperativa Libraria Universitaria Editrice Bologna, Bologna, Italy (1986).Google Scholar
  49. 49.
    U. R. Tipnis and M. K. Haddox, Casein kinase II mediated phosphorylation of ornithine decarboxylase, J. Cell Biol. 101: 356a (1985).Google Scholar
  50. 50.
    D. J. Reich, L. Worth and M. K. Haddox, Phosphorylation of ornithine decarboxylase in situ, J. Cell Biol. 101: 246a (1985).Google Scholar
  51. 51.
    N. J. Donato, C. F. Ware and C. V. Byus, A rat monoclonal antibody which interacts with mammalian ornithine decarboxylase at an epitope involved in phosphorylation, Biochim. Biophys. Acta 884: 370–382 (1986).PubMedCrossRefGoogle Scholar
  52. 52.
    L. Persson, Antibodies to ornithine decarboxylase. Immunochemical cross-reactivity, Acta Chem. Scand. B 36: 685–688 (1982).CrossRefGoogle Scholar
  53. 53.
    T. Kitani and H. Fujisawa, The effect of phospholipids on the activity of ornithine decarboxylase from rat liver, FEBS Lett. 132: 296–298 (1981).PubMedCrossRefGoogle Scholar
  54. 54.
    T. G. O’Brien, O. Hietala, K. O’Donnell and M. Holmes, Activation of mouse epidermal tumor ornithine decarboxylase by GTP: Evidence for different catalytic forms of the enzyme, Proc. Nat. Acad. Sci. USA 84: 8927–8931 (1987).PubMedCrossRefGoogle Scholar
  55. 55.
    F. Solano, R. Penafiel, M. E. Solano and J. A. Lazano, Equilibrium between active and inactive forms of rat liver ornithine decarboxylase mediated by L-ornithine and salts, FEBS Lett. 190: 324–328 (1985).PubMedCrossRefGoogle Scholar
  56. 56.
    T. Kitani and H. Fujisawa, Influence of salts on the activity and the subunit structure of ornithine decarboxylase from rat liver, Biochim. Biophys. Acta 784: 164–167 (1984).PubMedCrossRefGoogle Scholar
  57. 57.
    C. Danzin and L. Persson, L-Ornithine-induced inactivation of mammalian ornithine decarboxylase in vitro, Eur. J. Biochem. 166: 45–48 (1987).PubMedCrossRefGoogle Scholar
  58. 58.
    F. Flamigni, C. Guarnieri and C. M. Caldarera, Rat liver cytosol contains NADPH-and GSH-dependent factors able to restore ornithine decarboxylase inactivated by removal of thiol reducing agents, Biochem. J. 250: 53–58 (1988).PubMedGoogle Scholar
  59. 59.
    Y. Murakami, K. Fujita, T. Kamaji and S. Hayashi, Accumulation of ornithine decarboxylase-antizyme complex in HMOA cells, Biochem. J. 225: 689–697 (1985).PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • J. L. A. Mitchell
    • 1
  • M. F. Hicks
    • 1
  • H. J. Chen
    • 1
  • J. A. Hoff
    • 1
  1. 1.Department of Biological SciencesNorthern Illinois UniversityDeKalbUSA

Personalised recommendations