The Role of Polyamines in the Growth and Transformation of the African Trypanosome

  • Bruce F. Giffin
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 250)


The transformation from bloodstream to procyclic trypomastigote is a crucial step in the life cycle of the African trypanosome. The alteration in cellular architecture is accompanied by biochemical changes which permit survival of the bloodstream form trypanosome in the midgut of the insect vector. While a specific inducer of transformation has not yet been identified, recent studies have implicated the polyamines as having some role to play in this process.


Trypanosoma Brucei Bloodstream Form Variant Surface Glycoprotein Intracellular Polyamine Polyamine Depletion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bacchi, C.J., and McCann, P.P., 1987, Parasitic protozoa and polyamines, in: Inhibition of Polyamine Metabolism, Academic Press, New York.Google Scholar
  2. Bacchi, C.J., Lipschik, G.Y., and Nathan, H.C., 1977, Polyamines in trypanosomatids, J. Bacteriol., 131: 657.PubMedGoogle Scholar
  3. Bacchi, C.J., Nathan, H.C., Hutner, S.H., McCann, P.P., and Sjoerdsma, A., 1980, Polyamine metabolism: A potential therapeutic target in trypano-somes, Science, 210: 332.PubMedCrossRefGoogle Scholar
  4. Bacchi, C.J., Garafalo, J., Mochenhaupt, D., McCann, P.P., Diekma, K.A., Pegg, A.E., Nathan, H.C., Mullaney, E.A., Chunosoff, L., Sjoerdsma, A., and Hutner, S.H., 1983, In vivo effects of difluoromethylornithine on the metabolism and morphology of Trypanosoma brucei brucei, Mol. Biochem. Parasitol., 7: 209.PubMedCrossRefGoogle Scholar
  5. Bethell, D.R.H., and Pegg, A.E., 1981, Polyamines are needed for the differentiation of 3T3-L1 fibroblasts into adipose cells, Biochem. Biophys. Res. Comm., 102: 272.PubMedCrossRefGoogle Scholar
  6. Bienen, E.J., Hill, G.C., and Shin, K.-O., 1983, Elaboration of mito-chondrial function during Trypanosoma brucei differentiation, Mol. Biochem. Parsitol., 7: 75.CrossRefGoogle Scholar
  7. Bitonti, A.J., Cross-Doerson, D.E., and McCann, P.P., 1988, Effects of difluoromethylornithine on protein synthesis of the variant-specific glycoprotein (VSG) in Trypanosoma brucei brucei, Biochem. J., 250: 295.PubMedGoogle Scholar
  8. Bowman, I.B.R., and Flynn, I.W., 1976, Oxidative metabolism of trypano-somes, in: “Biology of the Kinetoplastidia,” Vol. 1, Academic Press, New York.Google Scholar
  9. Brown, R.C., Evans, D.A., and Vickerman, K., 1973, Int. J.Parasitol., 3: 691.PubMedCrossRefGoogle Scholar
  10. Brun, R., and Schonenberger, M., 1979, Cultivation and in vitro cloning of procyclic culture forms of Trypanosoma brucei in a semi-defined medium, Acta Trop., 36: 289.PubMedGoogle Scholar
  11. Brun, R., Jenni, L., Schonenberger, M., and Schell, K.F., 1981, In vitro cultivation of bloodstream forms of Trypanosoma brucei, T. rhodesiense and T. gambiense, J. Protozool., 28: 470.PubMedGoogle Scholar
  12. Brun, R., Hecker, H., Jenni, L., and Moloo, S.K., 1984, A quantitative ultrastructural study on the transformation of Trypanosoma brucei brucei metacyclic to bloodstream forms in vitro, Acta Tropica, 41: 117.PubMedGoogle Scholar
  13. Chen, L., Nav, D., and Liu, A., 1983, Effects of inhibitors of ornithine decarboxylase on the differentiaton of mouse neuroblastoma cells, Cancer Res., 43: 2812.PubMedGoogle Scholar
  14. Cross, G.A.M., 1975, Identification, purification and properties of clone-specific glycoprotein antigens constituting the surface coat of Trypanosoma brucei, Parasitol., 71: 393.CrossRefGoogle Scholar
  15. Cunningham, M.P., Van Hoeve, K., and Lumsden, W.H.R., 1963, Variable infec-tivity of organisms of the T. brucei subgroup during acute relapsing infections in rats, related to parasitemia, morphology and antibody response. Annual Report of the East African Trypanosomiasis Research Organization, 1962–1963, p. 21.Google Scholar
  16. deGee, A.L.W., Carstens, P.H.B., McCann, P.P., and Mansfield, J.M., 1984, Role of antibody in the elimination of trypanosomes after difluoro-methylornithine chemotherapy, J. Parasitol., 69: 818.CrossRefGoogle Scholar
  17. Erwin, B., Enton, D., Florini, J., and Pegg, A., 1983, Polyamine depletion inhibits the differentiation of L6 myoblast cells, Biochem.Biophys. Res. Comm., 114: 944.PubMedCrossRefGoogle Scholar
  18. Ghiotto, V., Brun, R., Jenni, L., and Hecker, H., 1979, Trypanosoma brucei: morphometric changes and loss of infectivity during transformation of bloodstream forms to procyclic culture forms in vitro, Exp. Parasitol., 48: 447.PubMedCrossRefGoogle Scholar
  19. Giffin, B.F., McCann, P.P., Bitonti, A.J., and Bacchi, C.J., 1986a, Polyamine depletion following exposure to difluormethylornithine both in vivo and in vitro initiates morphological alterations and mitochondrial activation in a monomorphic strain of Trypanosoma brucei brucei, J. Protozool., 33: 238.PubMedGoogle Scholar
  20. Giffin, B.F., McCann, P.P., and Bacchi, C.J., 4a, Effect of putrescine on the respiration of Trypanosoma brucei brucei, Mol. Biochem. Parasitol., 20: 165.Google Scholar
  21. Heby, O., Oredsson, S., Olsson, I., and Marton, L., 1983, A role for the polyamines in mouse embryonal carcinoma (F9 and PCC3) cell differentia-but not in human promyelocytic leukemia (HL-60) cell differentiation, Adv. Polyamine Res., 4: 727.Google Scholar
  22. Hill, G.C., 1976, Electron transport systems in kinetoplastida, Biochem.Biophys. Acta, 456: 149.PubMedGoogle Scholar
  23. Janne, J., Poso, H., and Raina, A., 1978, Polyamines in rapid growth and cancer, Biochem. Biophys. Acta, 473: 241.PubMedGoogle Scholar
  24. Kapyako, K., and Janne, J., 1983, Stimulation of melanotic expression in murine melanoma cells exposed to polyamine antimetabolites, Biochem.Biophys. Res. Comm., 113: 18.CrossRefGoogle Scholar
  25. LeRay, D., Bary, J.D., and Vickerman, K., 1978, Antigenic heterogeneity of metacyclic forms of Trypanosoma brucei, Nature, 273: 300.CrossRefGoogle Scholar
  26. McCann, P.P., Bacchi, C.J., Clarkson, Jr., A.B., Seed, J.R., Nathan, H.C., Amole, B.O., Hutner, S.H., and Sjoerdsma, A., 1981a, Further studies on difluoromethylornithine in African trypanosomes, Med. Biol., 59-434.Google Scholar
  27. McCann, P.P., Bacchi, C.J., Hanson, W.L., Cain, G.D., Nathan, H.C., Hutner, S.H., and Sjoerdsma, A., 1981b, Effect on parasitic protozoa of difluoromethylornithine — an inhbitor of ornithine decarboxylase, in: “Advances in Polyamine Research,” Vol. 3, Raven Press, New York.Google Scholar
  28. McCann, P.P., Bacchi, C.J., Nathan, H.C., and Sjoerdsma, A., 1983, Difluoromethylornithine and the rational development of polyamine antagonists for the cure of protozoan infections, in: “Mechanism of Drug Action,” Academic Press, New York.Google Scholar
  29. Nathan, H.C., Bacchi, C.J., Hutner, S.H., Rescigno, D., McCann, P.P., and Sjoerdsma, A., 1981, Antagonism by polyamines of the curative effects of difluoromethylornithine in Trypanosoma brucei brucei infections, Biochem. Pharmacol., 30: 3010.PubMedCrossRefGoogle Scholar
  30. Opperdoes, F.R., and Borst, P., 1977, Localization of nine glycolytic enzymes in a microbody-like organelle in Trypanosoma brucei: the glycosome, FEBS Letters, 80: 360.PubMedCrossRefGoogle Scholar
  31. Ormerod, W.E., 1979, Development of Trypanosoma brucei in the mammalian host, in.: “Biology of the Kinetoplastida,” Academic Press, New York.Google Scholar
  32. Overath, P., Czichos, J., Stock, U., and Nonnengaesser, C, 1983, Repression of glycoprotein synthesis and release of surface coat during transformation of Trypanosoma brucei, EMBO J., 2: 1721.PubMedGoogle Scholar
  33. Pegg, A.E., and McCann, P.P., 1982, Polyamine metabolism and function: A brief review, Am. J. Physiol., 243: C212.PubMedGoogle Scholar
  34. Robertson, M., 1912, Notes on the life history of Trypanosoma gambiense, Proc. Roy. Soc, Series B, 85: 66.CrossRefGoogle Scholar
  35. Robertson, M., 1913, Notes on the behavior of a polymorphic trypanosome in the bloodstream of the mammalian host, Report of the Sleeping Sickness Commission of the Royal Society, 13: 111.Google Scholar
  36. Roelants, G.E., and Pinder, M., 1984, Immunobiology of African trypanosomi-asis, Cont. Topics Immunol., 12: 225.Google Scholar
  37. Schindler, J., Kelly, M., and McCann, P.P., 1983, Inhibition of ornithine decarboxylase induces embryonal carcinoma cell differentiation, Biochem. Biophys. Res. Comm., 114-410.Google Scholar
  38. Schindler, J., Kelly, M., and McCann, P.P., 1985, The response of several murine embryonal carcinoma cell lines to stimulation of differentiation by difuloromethylornithine. J. Cell Physiol. 122: 1.PubMedCrossRefGoogle Scholar
  39. Sjoerdsma, A., and Scheckter, P.J., 1984, Chemotherapeutic implications of polyamine biosynthesis inhibition, Clin. Pharmacol. Ther., 35-287Google Scholar
  40. Tabor, C.W., and Tabor, H., 1984, Polyamines, Ann. Rev. Biochem. 53: 749.PubMedCrossRefGoogle Scholar
  41. Venkatesan, S., and Ormerod, W.E., 1976, Lipid content of the slender and stumpy forms of Trypanosoma brucei rhodesiense: a comparative study, Comp. Biochem. Physiol., 538: 481.Google Scholar
  42. Vickerman, K., 1965, Polymorphism and mitochondrial activity in sleeping sickness trypanosomes, Nature, 20: 762.CrossRefGoogle Scholar
  43. Wijers, D.J.B., 1959, Polymorphism in Trypanosoma gambiense and Trypanosoma rhodesiense, and the significance of the intermediate forms, Ann. Trop. Med. Parasitol., 53: 59.PubMedGoogle Scholar
  44. Wijers, D.J.B., and Willett, K., 1960, Factors that may influence the infection rate of Glossina palpalis with Trypanosoma gambiense II. The number and the morphology of the trypanosomes present in the blood of the host at the time of the infected feed, Ann. Trop. Med.Parasitol., 54: 341.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Bruce F. Giffin
    • 1
  1. 1.Department of BiologyUniversity of DaytonDaytonUSA

Personalised recommendations