Advertisement

Polyamines in the Cell Cycle of the Malarial Parasite Plasmodium Falciparum

  • U. Bachrach
  • L. Abu-Elheiga
  • Y. G. Assaraf
  • J. Golenser
  • D. T. Spira
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 250)

Abstract

Malaria is a major health problem in many developing nations, More than 800 million people suffer from the disease with 1.5 milion deaths each year, Plasmodium falciparum causes the majority of the cases and is responsible for the fatal disease in man. The parasites undergo asexual developmental cycles in the erythrocyte and produce up to 32 merozites.

Keywords

Plasmodium Falciparum Infected Erythrocyte Malarial Parasite Trypanosoma Brucei Polyamine Synthesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W.P. Rogers, Advances in parasitology: 1886-1986. Inter. J. Parasitol. 17: 1–13 (1987).CrossRefGoogle Scholar
  2. 2.
    Y.G. Assaraf, J. Golenser, D.T. Spira, and U. Bachrach, Polyamine levels and the activity of their biosynthetlc enzymes in human erythrocytes infected with the malarial parasite, Plasmodium falciparum, Biochem. J. 222: 815–819 (1984).PubMedGoogle Scholar
  3. 3.
    Y.G. Assaraf, J. Golenser, D.T. Spira, and U. Bachrach. Plasmodium falciparum: synchronization of cultures with DL-— dif luoromethylornithine an inhibitor of polyamine biosynthesis, Exp. Parasitol. 61: 229–235 (1986).PubMedCrossRefGoogle Scholar
  4. 4.
    Y. G. Assaraf, J. Golenser, D.T. Spira, G. Messer, and U. Bachrach, Cytostatic effect of DL-03B1;-Udifluoromethylornithine against Plasmodium falciparum and its reversal by diamines and spermidine. Parsoitol. Res. 73: 313–318 (1987).CrossRefGoogle Scholar
  5. 5.
    W. Trger and J.B. Jensen, Human malaria parasites in continuous culture, Science, 193: 673–675 (1976).CrossRefGoogle Scholar
  6. 6.
    Y.G. Assaraf, L. Abu-Elheiga, D.T. Spira, H. Desser, and U. Bachrach, Effect of polyamine depletion on macromolecular synthesis of the malarial parasite, Plasmodium falciparum, cultured in human erythrocytes. Biochem. J. 242: 221–226 (1987).PubMedGoogle Scholar
  7. 7.
    N. Khan, G. Wright, L. Dudycz, and N. Brown, Butylphenyl dGTP a selective and potent inhibitor of DNA polymerase alpha, Nucleic Acid Res. 12: 3695–3706 (1984).PubMedCrossRefGoogle Scholar
  8. 8.
    A. Spanos, S.G. Sedwick, G.T. Yarranton, U. Hübscher, and G.R. Banks, Detection of the catalytic activities of DNA polymerases and their associated exonucleases following SDS-polyacrylamide gel electrophoresis. Nucleic Acid Res. 9: 1825–1839 (1981).PubMedCrossRefGoogle Scholar
  9. 9.
    S. Tanaka, S-Z. Hu, T. S-F. Wang, and D. Korn, Preparation and preliminary characaterization of monoclonal antibodies against human DNA polymeraseα. J. Biol. Chenu 257: 8386–8390 (1982).Google Scholar
  10. 10.
    L.A. Loeb, P.K. Liu, and M. Fry, DNA polymerase α: Enzymology, function, fidelity and mutagenesis. Prog. Nucleic Acid Res. Mol Biol. 33: 57–110. (1986).PubMedCrossRefGoogle Scholar
  11. 11.
    A. M. Holmes, E. Cheriathunam, A. Kalineki, and L.M.S. Cheng, Isolation and partial characterization of DNA polymerases from Crithidia fasiculata, Mol. Biochem. Parasitol. 10: 195–205 (1984).CrossRefGoogle Scholar
  12. 12.
    T.W. North, and D.J. Wyler, DNA synthesis in promastigotes of Leishmania major and L. donovanis, Mol. Biochem. Parasitol. 22: 215–221 (1987).PubMedCrossRefGoogle Scholar
  13. 13.
    L.M.S. Chang, E. Cheriathunam, E.M. Mahoney, and A. Cerami, DNA polymerases in parasitic protozoa differ from host enzymes, Science, 208: 510–511 (1980).PubMedCrossRefGoogle Scholar
  14. 14.
    S. Ikegami, T. Taguchi, M. Ohashi, M. Oguro, H. Nagano, and Y. Mano, Aphidicolin prevents mitotic cell division by interfering with the activity of DNA polymerase-α, Nature 275: 458–460 (1978).PubMedCrossRefGoogle Scholar
  15. 15.
    S.S. Cohen, Comparative biochemistry and drug design for infectious disease, Science 205: 964–971 (1979).PubMedCrossRefGoogle Scholar
  16. 16.
    Y.G. Assaraf, The role of polyamines in the development of malaria parasite. Ph.D. thesis, Hebrew University Jerusalem, 1986.Google Scholar
  17. 17.
    M.A. Phillips, P. Coffino, and C.C. Wang, Cloning and sequencing of ornithine decarboxylase gene from Trypanosoma brucei. J. Biol. Chem. 262: 8721–8727 (1987).PubMedGoogle Scholar
  18. 18.
    K. Igarashi, C.W. Porter, and D.R. Morris, Comparison of specificity of inhibition of polyamine synthesis in bovine lymphocytes by ethylglyoxal bis(guanylhydrozone) and methylglyoxal bis(guanylhydrazone), Cancer Res. 44: 5326–5331 (1984).PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • U. Bachrach
    • 1
  • L. Abu-Elheiga
    • 1
  • Y. G. Assaraf
    • 1
  • J. Golenser
    • 1
    • 2
  • D. T. Spira
    • 1
    • 2
  1. 1.Department of Molecular BiologyHebrew University-Hadassah Medical SchoolJerusalemIsrael
  2. 2.Department of ParsitologyHebrew University-Hadassah Medical SchoolJerusalemIsrael

Personalised recommendations