Relationship Between Polyamine and Ethylene Biosynthesis in Plants and its Significance for Morphogenesis in Cell Cultures

  • Subhash C. Minocha
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 250)


The regulation of somatic embryogenesis in plant cell cultures is a topic of considerable interest, not only because of its potential applications for micropropagation and genetic engineering in plants but also as a prime example of the process of controlled development and differentiation. Therefore, it is not surprising that a vast amount of literature has accumulated discussing the morphogenetic and biochemical events underlying embryogénic development in cell cultures. The complexity of interaction of various chemical factors within the plant tissue and those that are externally applied, has been stressed in a number of reviews (Steward, 1976; Street, 1977; Ammirato, 1983, a, b, 1984; Sung et al., 1984; Raghavan, 1986).


Somatic Embryogenesis Ethylene Biosynthesis Diamine Oxidase Polyamine Level Polyamine Biosynthesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abeles, F. B. 1973. Ethylene in Plant Biology. Acad. Press, New York.Google Scholar
  2. Altman, A. and U. Bachrach. 1981. Involvement of polyamines in plant growth and senescence. In: Adv. Polyamine Res. vol. 3: 365–375.Google Scholar
  3. Altman, A., R. Kaur-Sawhney, and A. W. Galston. 1977. Stabilization of oat leaf protoplasts through polyamine-mediated inhibition of senescence. Plant Fhysiol. 60: 570–574.CrossRefGoogle Scholar
  4. Ammirato, P. V. 1983a. Erribryogenesis. In: D. A. Evans, W. R. Sharp, P. V. Ammirato, and Y. Yamada (eds.). Handbook of Plant Cell Culture pp. 82–123. Macmillan, N.Y.Google Scholar
  5. Ammirato, P. V. 1983b. The regulation of somatic embryo development in plant cell cultures: suspension culture techniques and hormone requirements. Bio/technology March 1983: 68–74.CrossRefGoogle Scholar
  6. Ammirato, P. V. 1984. Induction, maintenance, and manipulation of development in embryogénic cell suspension cultures. In: I. K. Vasil (ed.), Cell Culture and Somatic Cell Genetics of Plants. Vol. 1 p. 139–151. Acad. Press, N. Y.Google Scholar
  7. Apelbaum, A., A. C. Burgoon, J. D. Anderson, M. Lieberman, R. Ben-Arie, and A. K. Mattoo. 1981. Polyamines inhibit biosynthesis of ethylene in higher plant tissue and fruit protoplasts. Plant Physiol. 68: 453–456.PubMedCrossRefGoogle Scholar
  8. Apelbaum, A., A. Goldlust, and I. Icekson. 1985. Control by ethylene of arginine decarboxylase activity in pea seedlings and its implication for hormonal regulation of plant growth. Plant Fhysiol. 79: 635–640.CrossRefGoogle Scholar
  9. Bagni, N., B. Malucelli, and P. Torrigani. 1980. Polyamines, storage substances and abscisic acid-like inhibitors during dormancy and very early activation of Helianthus tuberosus tuber tissues. Fhysiol. Plant. 49: 341–345.CrossRefGoogle Scholar
  10. Bagni, N., P. Torrigiani, and P. Barbieri. 1981. Effect of various inhibitors of polyamine synthesis on the growth of Helianthus tuberosus. Med. Biol. 59: 403–409.PubMedGoogle Scholar
  11. Balague, C. and J. C. Pech. 1985. Relationship between the activity of ethylene-forming enzyme and the level of intracellular 2, 4-di-chlorophenoxyacetic acid in pear cell cultures in vitro. J. Plant Growth Reg. 4: 81–89.CrossRefGoogle Scholar
  12. Borkird, C., J. H. Choi, and Z. R. Sung. 1986. Effect of 2,4-dichlorophenoxyacetic acid on the expression of embryonic program in carrot. Plant Fhysiol. 81: 1143–1146.CrossRefGoogle Scholar
  13. Bradley, P. M., F. El-Fike, and K. L. Giles. 1984. Polyamines and arginine affect somatic embryogenesis of Daucus carota. Plant Sci. Lett. 34: 397–401.CrossRefGoogle Scholar
  14. Breton, A. M. and Z. R. Sung. 1982. Temperature-sensitive carrot variants impaired in somatic embryogenesis. Develop. Biol. 90: 58–66.PubMedCrossRefGoogle Scholar
  15. Brown, S., D. F. Wetherell, and D. K. Dougall. 1976. The potassium requirement for growth and embryogenesis in wild carrot suspension cultures. Fhysiol. Plant. 37: 73.CrossRefGoogle Scholar
  16. Burg, S. P. and A. E. Burg. 1966. The interaction between auxin and ethylene and its role in plant growth. Proc. Nat. Acad. Sci. USA 55: 262–269.PubMedCrossRefGoogle Scholar
  17. Campbell, R. A., D. R. Morris, D. Bartos, G. D. Davies, and F. Bartos (eds.). 1978. Advances in Polyamine Research Vols. 1 and 2, Raven Press, N. Y.Google Scholar
  18. Cassells, A. C. and L. Tamma. 1986. Ethylene and ethane release during tobacco protoplast isolation and protoplast survival potential in vitro. Fhysiol. Plant 66: 303–308.CrossRefGoogle Scholar
  19. Cheng, S. H. and C. H. Kao. 1983. localized effect of polyamines on chlorophyll loss. Plant and Cell Environ. 24: 1463-1467.Google Scholar
  20. Cho, S. C. 1983. Effect of cytokinin and several inorganic cations on the polyamine content of lettuce cotyledons. Plant Cell Fhysiol. 24: 27–32.Google Scholar
  21. Cohen, E., S. Arad, Y. M. Heimer, and Y. Mizrahi. 1982a. Participation of ornithine decarboxylase in early stages of tomato fruit development. Plant Physiol. 70: 540–543.PubMedCrossRefGoogle Scholar
  22. Cohen, E., Y. M. Heimer, Y. Mizrahi. 1982b. Ornithine decarboxylase and arginine decarboxylase activities in meristematic tissues of tomato and potato plants. Plant Physiol. 70: 544–546.PubMedCrossRefGoogle Scholar
  23. Dai, Y. R., R. Kaur-Sarwhney, and A. W. Galston. 1982. Promotion by gibberellic acid of polyamine biosynthesis in internodes of light-grown dwarf peas. Plant Fhysiol. 69: 103–105.CrossRefGoogle Scholar
  24. Desai, H. V. and A. R. Mehta. 1985. Changes in polyamine levels during shoot formation, root formation, and callus induction in cultured Passiflora leaf discs. J. Plant Physiol. 119: 45–53.CrossRefGoogle Scholar
  25. Even-Chen, Z., A. K. Mattoo, and R. Goren. 1982. Inhibition of ethylene biosynthesis by aminoethoxyvinylglycine and by polyamines shunts label from 3, 4-[14C]-methionine into spermidine in aged orange peel discs. Plant Physiol. 69: 385–388.PubMedCrossRefGoogle Scholar
  26. Everette, N. 1982. The determination phase of differentiation. In: Proc. Intl. Cong. Plant Tissue and Cell Culture, Tokyo, A. Fujiwara (ed.), pp. 93-94.Google Scholar
  27. Feirer, R. P., G. Mignon, and J. D. Litvay. 1984. Acginine decarboxylase and polyamines required for erribryogenesis in the wild carrot. Science 223: 1433–1435.PubMedCrossRefGoogle Scholar
  28. Fienberg, A. A., J. H. Choi, W. P. Lubich, and Z. R. Sung. 1984. Developmental regulation of polyamine metabolism in growth and differentiation of carrot culture. Planta 162: 532–539.CrossRefGoogle Scholar
  29. Flores, H. E. and A. W. Galston. 1982. Polyamines and plant stress: Activation of putrescine biosynthesis by osmotic shock. Science 217: 1259–1261.PubMedCrossRefGoogle Scholar
  30. Flores, H. E. and A. W. Galston, 1984a. Osmotic stress-induced polyamine acxaimulation in cereal leaves. I. Physiological parameters of the response. Plant Physiol. 75: 102–109.PubMedCrossRefGoogle Scholar
  31. Flores, H. E. and A. W. Galston. 1984b. Osmotic stress-induced polyamine accumulation in cereal leaves. II. Relation to amino acid pools. Plant Fhysiol. 75: 110–113.CrossRefGoogle Scholar
  32. Fluhr, R., C. Kuhlmeier, F. Nagy and N.-H. Chua. 1986. Organ-specific and light-induced expression of plant genes. Science 232: 1106–1112.PubMedCrossRefGoogle Scholar
  33. Fowler, J. L. and P. W. Morgan. 1972. The relationship of the peroxidative indoleacetic acid oxidase system to in vivo ethylene synthesis in cotton. Plant Fhysiol. 49: 555–559.CrossRefGoogle Scholar
  34. Fuhrer, J., R. Kaur-Sawhney, L. M. Shih and A. W. Galston. 1982. Effect of exogenous 1, 3-diaminopropane and spermidine on senescence of oat leaves. Plant Fhysiol. 70: 1597–1600.CrossRefGoogle Scholar
  35. Fujimura, T., A. Komamine. 1975. Effects of various growth regulators on the embryogenesis in a carrot cell suspension culture. Plant Sci. Lett. 5: 359–364.CrossRefGoogle Scholar
  36. Fujimura, T. and A. Kbmamine. 1979a. Synchronization of somatic embryogenesis in a carrot cell suspension culture. Plant Fhysiol. 64: 162–164.CrossRefGoogle Scholar
  37. Fujimura, T. and A. Komamine. 1979b. Involvement of endogenous auxin in somatic embryogenesis in a carrot suspension culture. Z. Pflanzenphysiol. 95: 13–19.Google Scholar
  38. Fujimura, T. and A. Komnamine. 1980. Mode of action of 2, 4-D zeatin on somatic embryogenesis in a carrot cell suspension culture. Z. Pflanzenphysiol. 99: 1–8.Google Scholar
  39. Galston, A. W. 1983. Polyamines as modulators of plant development. BioScience 33: 382–388.CrossRefGoogle Scholar
  40. Galston, A. W., A. Altaian, R. Kaur-Sawhney. 1978. Polyamines, ribonuclease and the improvement of oat leaf protoplasts. Plant Sci. Lett. 11: 69–79.CrossRefGoogle Scholar
  41. Galston, A. W. and R. Kaur-Sawhney. 1987. In: Plant hormones and their role in plant growth and development. P. J. Davies (ed.) pp. 280-295.Google Scholar
  42. Giuliano, G., D. Rosellini and M. Terzi. 1983. A new method for the purification of the different stages of carrot embryoids. Plant cell Rep. 2: 216–218.CrossRefGoogle Scholar
  43. Goren, R., N. Palavan, H. E. Flores, and A. W. Galston. 1982. Changes in polyamine titer in etiolated pea seedlings following red light treatment. Plant Cell Fhysiol. 23: 19–26.Google Scholar
  44. Gregor, D., J. Reinert and H. Matsumoto. 1974. Changes in chromosomal proteins from embryo induced carrot cells. Plant Cell Fhysiol. 15: 875–881.Google Scholar
  45. Halperin, W. and D. F. Wetherall. 1964. Adventive embryony in tissue cultures of wild carrot Daucus carota. Amer. J. Bot. 51: 274–283.CrossRefGoogle Scholar
  46. Halperin, W. and D. F. Wetherall. 1965. Ammonium requirement for embryogenesis in vitro. Nature 205: 519–520.CrossRefGoogle Scholar
  47. Hamana, K. and S. Matsuzaki. 1982. Distribution of polyandries in prokaryotes, algae, plants and fungi. In: Polyamines: Basic and Clinical Aspects. Imahori et al. (eds.) pp. 105-112. VNU Science Press.Google Scholar
  48. Herrera-Estrella, L., G. Van den Broeck, J. Schell, M. Van Montague, M. P. Tiitiko, A. R. Cashmore, and A. P. Mausen. 1985 Use of Chimeric genes to study light-inducible gene expression and chloroplast import of the small subunit of Ribulore-l, 5-bisphosphate carboxylase. In: Molecular Biology of the Fhotosynthetic Apparatus. Cold Spr. Harbor Lab. N. Y. pp. 397–405.Google Scholar
  49. Herrera-Estrella, L., G. Van den Broeck, R. Maenhaut, M. Van Montagu, J. Schell, M. Tirriko and A. Cashmore. 1984. Light-inducible and chloroplast-associated expression of a Chimaeric gene introduced into Nicotiana tabacum using a Ti plasmid vector. Nature 310: 115–120.PubMedCrossRefGoogle Scholar
  50. Huhtinen, O., J. Honkanen, and L. K. Simola. 1982/83. Ornithine-and putrescine-supported divisions and cell colony formation in leaf protoplasts of alders (Alnus crlutinosa and A. incana). Pl. Sci. Lett. 28: 3–9.Google Scholar
  51. Kato, H. and M. Takeuchi, 1966. Embryogenesis from the epidermal cells of carrot hypocotyl. Sci. Pap. Coll. Gen. Edu. Univ. Tokyo 16: 245–254.Google Scholar
  52. Kaur-Sawhney, R. and A. W. Galston. 1979. Interaction of polyamines and light on biochemical processes involved in leaf sequence. Plant Cell Environ. 2: 189–196.CrossRefGoogle Scholar
  53. Kaur-Sawhney, R., L. M. Shin, H. E. Flores, and A. W. Galston. 1982. Relation of polyamine synthesis and titer aging and senescence in oat leaves. Plant Physiol. 69: 405–410.PubMedCrossRefGoogle Scholar
  54. Kaur-Sawhney, R., N. S. Shekhawat, and A. W. Galston. 1985. Polyamine levels as related to growth, differentiation and senescence in protoplast-derived cultures of Vigna aconitifolia and Avena sativa. Plant Growth Regulation 3: 329–337.PubMedCrossRefGoogle Scholar
  55. Kyriakidis, D. A. 1983. Effect of plant growth hormones and polyamines on ornithine decarboxylase activity during the germination of barley seeds. Physiol. Plant. 57: 499–504.CrossRefGoogle Scholar
  56. Lieberman, M. 1979. Biosynthesis and action of ethylene. Annu. Rev. Plant Fhysiol. 30: 533–591.CrossRefGoogle Scholar
  57. Litz, R. E. and B. Schafer. 1987. Polyandries in adventitious and somatic etribryogenesis in mango (Manaifera indica L.) J. Plant Physiol. 128: 251–258.CrossRefGoogle Scholar
  58. LoSchiavo, F. 1984. A critical review of the procedure for embryo purification. Plant Mol. Biol. Rep. 2: 15–18.CrossRefGoogle Scholar
  59. Lurssen, K., K. Naumann, R. Schroder. 1979. 1-Amino-cycloprcpane-1-carboxylic acid-an intermediate of the ethylene biosynthesis in higher plants. Z. Pflanzenphysiol. 92: 285–294.Google Scholar
  60. Malmberg, R. L. and J. Mclndoo. 1983. Abnormal floral development of a tobacco mutant with elevated polyamine levels. Nature 305: 623–625.CrossRefGoogle Scholar
  61. Masuda, K. Y. Kikuta, and Y. Okazawa. 1984. Embryogenesis and ribosomal ENA in carrot cell suspensions cultured in vitro. Plant Sci. Lett. 33: 23–29.CrossRefGoogle Scholar
  62. McBride, R. and M.L. Evans. 1977. Auxin inhibition of acid-and fusicoccin-induced elongation in lentil roots. Planta 136: 97–102.CrossRefGoogle Scholar
  63. Mele, E., J. Messegher, and P. Camprubi. 1982. Effect of ethylene on carnation plants grown in sealed vessels. In: Proc. Intl. Cong. Plant Tissue and Cell Culture. Tokyo, A. Fujiwara (ed.), pp 69-70.Google Scholar
  64. Minocha, S.C. and C. Robie. 1985. The role of 2, 4-D and polyamines in somatic embryogenesis in carrot cell cultures (Abst.) 12th Intern. Conf. Pl. Gr. Subs., Aug 26-31, 1985, Heidelberg, W. Germany.Google Scholar
  65. Montague, M. J., T. A. Armstrong, and E. G. Jaworski. 1979. Polyamine metabolism in embryogenic cells of Daucus carota. I. Changes in intracellular content and rates of synthesis. Plant Physiol. 63: 341–345.PubMedCrossRefGoogle Scholar
  66. Montague, M.J., J.W. Kbppenbrink, and E. G. Jaworski. 1978. Polyamine metabolism in embryogénie cells of Daucus carota. II. Changes in arginine decarboxylase activity. Plant Physiol. 62: 430–433.PubMedCrossRefGoogle Scholar
  67. Morgan, D. M. L. 1987. Polyamines. In: Essays in Biochemistry. R. D. Marshall and K. F. Tipton (eds.). Vol. 23, pp. 82–115. Academic Press, N.Y.Google Scholar
  68. Newcomb, W. and D. F. Wethrell. 1970. The effects of 2, 4, 6-trichlorophenoxyacetic acid on embryogenesis in wild carrot tissue cultures. Bot. Gaz. 131: 242–245.CrossRefGoogle Scholar
  69. Palavan, N., R. Goren, and A. W. Galston. 1984. Effects of some growth regulators on polyamine biosynthetic enzymes in etiolated pea seedlings. Plant Cell Physiol. 25: 541–546.Google Scholar
  70. Pegg, A.E. 1986. Recent advances in the biochemistry of polyamines in eukaryotes. Biochem. J. 234: 249–262.PubMedGoogle Scholar
  71. Priebe, A., H. KLein, and J. Jager. 1978. Role of polyamines in SO2 polluted pea plants. J. Exp. Bot. 29: 1045–1050.CrossRefGoogle Scholar
  72. Privalle, L. S. and J. S. Graham. 1987. Radiolabeling of a wound-inducible pyridoxal phosphate-utilizing enzyme: Evidence for its identification as ACC synthase. Arch. Biochem. Biophys. 253: 333–340.PubMedCrossRefGoogle Scholar
  73. Raghavan, V. 1986. Somatic embryogenesis. Embryogenesis in Angiosperms. Cambridge Uhiv. press, Cambridge, U. K. pp. 115–151.Google Scholar
  74. Reinert, J. 1959. Uber die Kontrolle der Morphogenese und die Induktion von Adventivembrynen an Gewebekulturen aus Karotten. Planta 53: 318–333.CrossRefGoogle Scholar
  75. Reinert, J. 1973. Aspect of organization-organogenesis and erobryogenesis. In: H.E. Street (ed.) Plant Tissue and Cell Culture. Blackwell Sci. Publ. Oxford, U. K. pp. 338–355.Google Scholar
  76. Roberts, D. R., M. A. Walker, J. E. Thompson, and E. B. Durobroff. 1984. The effects of inhibitors of polyamine and ethylene biosynthesis on senescence ethylene production and polyamine levels in cut carnation flowers. Plant Cell Fhysiol. 25: 315–322.Google Scholar
  77. Sala, F., M. G. Galli, E. Nielson, E. Magnien, M. Devreux, G. P. Noy and S. Spadari. 1983. Synchronization of nuclear DNA synthesis in cultured Daucus carota L. cells by aphidicolin. FEBS Lett. 153: 204–208.CrossRefGoogle Scholar
  78. Saurbrey, E., K. Grossman, and J. Jung. 1987. Is ethylene involved in the regulation of growth of sunflower cell suspension cultures? J. Plant Fhysiol. 127: 471–479.CrossRefGoogle Scholar
  79. Saurbrey, E., K. Grossman, and J. Jung. 1988. Ethylene production by sunflower cell suspensions. Plant Fhysiol. 87: 510–513.CrossRefGoogle Scholar
  80. Sermbdner, G., D. Gross, H. W. Liebisch and G. Schneider. 1980. Biosynthesis and metabolism of plant hormones. In: Hormonal Regulation of Development I. J. MacMillan (ed.) Encycl. Plant Fhysiology New Series vol. 9 pp. 281–444. Springer-Verlag, Berlin.CrossRefGoogle Scholar
  81. Seraffini-Fracassini, D., N. Bagni, and P. G. Cionini, and A. Bennici. 1980. Polyandries and nucleic acids during the first cell cycle of Helianthus tuberosus tissue after the dormancy break. Planta 148: 332–337.CrossRefGoogle Scholar
  82. Seraffini-Fracassini, D., P. Torrigiani, and C. Branca. 1984. Polyamines bound to nucleic acids during dormancy and activation of tuber cells of Helianthus tuberosus. Fhysiol. Plant 60: 351–357.CrossRefGoogle Scholar
  83. Schiavone, F. M., and T. J. Cooke. 1985. A geometric analysis of somatic embryo formation in carrot cell cultures. Can. J. Bot. 63: 1573–1578.CrossRefGoogle Scholar
  84. Simpson, R. B., M. Lillis, L. Margossian and T. D. McKnight. 1983. DNA transfer to plant cells using the Ti plasmid vector. In: Plant Molecular Biology. R. B. Goldberg (ed.), Alan R. Liss, Inc. N. Y. pp. 23–34.Google Scholar
  85. Slocum, R. D. and A. W. Galston. 1985. Changes in polyamine biosynthesis associated with post-fertilization growth and development in tobacco ovary tissues. Plant Fhysiol. 79: 336–343.CrossRefGoogle Scholar
  86. Slocum, R. D. R. Kaur-Sawhney, and A. W. Galston. 1984. The Physiology and biochemistry of polyamines in plants. Arch. Biochem. Biophys. 235: 283–303.PubMedCrossRefGoogle Scholar
  87. Smith, S. M. and H. E. Street. 1974. The decline of embryogénie potential as callus and suspension cultures of carrot (Daucus carota L.) are serially subcultured. Ann. Bot. 38: 233–241.Google Scholar
  88. Smith, T. A. 1981. Amines. In: The Biochemistry to Plants. P. K. Stumpf and E. E. Conn (eds.) vol. 7, pp. 249–268. Acad. Press, N.Y.Google Scholar
  89. Smith, T. A. 1985a. Polyamines. Ann. Rev. Pl. Fhysiol. 36: 117–143.CrossRefGoogle Scholar
  90. Smith, T. A. 1985b. The di-and poly-amine oxidases in higher plants. Biochem Soc. Trans. 610 meeting 13: 319–322.Google Scholar
  91. Steward, F. C. 1976. Multiple interactions between factors that control cells and development. In: N. Sutherland (ed.), Perspectives in Experimental Biology. 2: 9–23. Pergamon Press, Oxford.Google Scholar
  92. Steward, F. C., M. O. Mapes, and K. Mears. 1958. Growth and organized development of cultured cells. II. Organization in cultures grown from freely suspended cells. Amer. J. Bot. 45: 705–708.CrossRefGoogle Scholar
  93. Street, H. E. 1977. Enibryogenesis and chemically induced organogenesis. In: W. R. Sharp, P. O. Larsen, E. F. Paddock, and V. Raghavan (eds.), Plant Cell and Tissue Culture Principles and Applications, pp. 123–153. Ohio St. U. Press, Columbus.Google Scholar
  94. Sung, Z. R., A. Fienberg, R. Chorneau, C. Borkird, I. Fumer, J. Smith. 1984. Developmental biology of embryogenesis from carrot culture. Plant Mol. Biol. Rep. 2: 3–14.CrossRefGoogle Scholar
  95. Suresh, M. R., S. Ramakrishna, and P. R. Adiga. 1978. Regulation of arginine decarboxylase and putrescine levels in Cucumis sativus cotyledons. Phytochemistry 17: 57–63.CrossRefGoogle Scholar
  96. Suttle, J.C. 1981. Effect of polyamines on ethylene production. Phytochemistry 20: 1477–1488.CrossRefGoogle Scholar
  97. Tabor, H. and C. W. Tabor (eds.). 1983. Methods in Enzymology. vol. 94, pp. 1–497 Acad. Press, New York.Google Scholar
  98. Tabor, C. W. and H. Tabor. 1984. Polyamines. Ann. Rev. Biochem. 53: 749–790.PubMedCrossRefGoogle Scholar
  99. Terzi, M., L. Pitto, Z. R. Sung. 1985. Somatic Enibryogenesis. IPRA, Rome, pp. 1–202.Google Scholar
  100. Tibercio, A. F., R. Kaur-Sawhney, and A. W. Galston. 1987. Effect of polyamine biosynthetic inhibitors on alkaloids and organogenesis in tobacco callus cultures. Plant Cell, Tissue and Organ Culture 9: 111–120.CrossRefGoogle Scholar
  101. Timko, M. P., A. P. Kausch, C. Castresana, J. Fassler, L. Herrera-Estrella, G. Van den Broeck, M. Van Montagu, J. Schell and A. R. Cashmore. 1985. Light regulation of plant gene expression by an upstream enhancer-like element. Nature 318: 579–582.PubMedCrossRefGoogle Scholar
  102. Tisserat, B. and T. Murashige. 1977. Effects of ethephon, ethylene, and 2, 4-dichlorophenoxyaoetic acid on asexual embryogenesis in vitro. Plant Fhysiol. 60: 437–439.CrossRefGoogle Scholar
  103. Torrigiani, P., M. M. Altamura, G. Pasqua, B. Monacelli, D. Serafini-fracassini, and N. Bagni. 1987. Free and conjugated polyamines during de novo floral and vegetative bud formation in thin cell layers of tobacco. Fhysiol. Plant. 70: 453–460.CrossRefGoogle Scholar
  104. Turner, L. B. and G. R. Stewart. 1986. The effect of water stress upon polyamine levels in barley (Hordeum vulgare L.) leaves. J. Exp. Bot. 37: 170–177.CrossRefGoogle Scholar
  105. Verra, D. C. and T. Tarka, 1985. Influence of l-aminocyclopropanecarboxylic acid (AOC) and consequent ethylene biosynthesis on growth and somatic embryogenesis in wild carrot (Daucus carota L.) cell suspension. In: Somatic Embryogenesis. M. Terzi, L. Pitto and Z. R. Sung (eds.), IPRA, Pome, pp 151–158.Google Scholar
  106. Warren, G. S. and M. W. Fowler. 1977. A physical method for the separation of various stages in the embryogenesis of carrot cell culture. Plant Sci. Lett. 9: 71–76.CrossRefGoogle Scholar
  107. Wetherell, D. F. and D. K. Dougall. 1976. Sources of nitrogen supporting growth and embryogenesis in cultured wild carrot tissue. Physiol. Plant. 37: 97–103.CrossRefGoogle Scholar
  108. Wochok, Z. S. and D. F. Wetherell. 1972. Restoration of declining morphogenetic capacity in long-term cultures of Daucus carota by kinetin. Experientia 28: 104–105.CrossRefGoogle Scholar
  109. Woltering, E. J. 1986. Ethylene and carbon dioxide accumulation within various tissue culture systems. Acta Bot. Neerl. 35: 50.Google Scholar
  110. Yang, S. F. and N. E. Hoffman, 1984. Ethylene biosynthesis and its regulation in higher plants. Annu. Rev. Plant Physiol. 35: 155–189.CrossRefGoogle Scholar
  111. Young, N. D. and A. W. Galston. 1983. Putrescine and acid stress: Induction of arginine decarboxylase activity and putrescine acumulation by low pH. Plant Physiol. 71: 767–771.PubMedCrossRefGoogle Scholar
  112. Yu, Y. B. and S. F. Yang. 1979. Auxin-induced ethylene production and its inhibition by aininoethoxyvinylglycine and cobalt ions. Plant Physiol. 64: 1074–1077.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Subhash C. Minocha
    • 1
  1. 1.Department of Botany and Plant PathologyUniversity of New HampshireDurhamUSA

Personalised recommendations