Advertisement

Control of Phytopathogens by Inhibitors of Polyamine Biosynthesis

  • Arthur W. Galston
  • Leonard H. Weinstein
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 250)

Abstract

It is now clear that polyamines (PAs) are required for the normal growth and development of microorganisms as well as cells of higher animals and plants,1, 2, 3. In all organisms, putrescine (Put) is formed from ornithine via ornithine decarboxylase (ODC); in some microorganisms and in higher plants, Put may also be formed from arginine via arginine decarboxylase (ADC). Put is then transformed to the triamine spermidine (Spd) and the tetramine spermine (Spm) by successive enzyme-mediated aminopropyl transfers from S-adenosylmethionine (SAM).

Keywords

Powdery Mildew Stem Rust Verticillium Wilt Ornithine Decarboxylase Polyamine Biosynthesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. W. Tabor and H. Tabor. Polyamines in microorganisms. Microbiol. Rev. 49: 81 (1985).PubMedGoogle Scholar
  2. 2.
    R. D. Slocum, R. K. Sawhney, and A. W. Galston. The physiology and biochemistry of polyamines plants. Arch. Biochem. Biophys. 235: 28 (1984).CrossRefGoogle Scholar
  3. 3.
    O. Heby. Role of polyamines in the control of cell proliferation and differentiation. Differentiation 19: 1 (1981).PubMedCrossRefGoogle Scholar
  4. 4.
    C. W. Tabor. Mutants of Saccharomvces cerevisiae deficient in polyamine biosynthesis: studies on the regulation of ornithine decarboxylase. Med. Biol. 59: 272 (1981).PubMedGoogle Scholar
  5. 5.
    B. W. Metcalf, P. Bey, C. Danzin, M. J. Jung, P. Casara, and J. P. Vevert. Catalytic irreversible inhibition of mammalian ornithine decarboxylase (E.C. 4.1.1.17) by substrate and product analogues. Jour. Amer. Chem. Soc. 100: 2551 (1978).CrossRefGoogle Scholar
  6. 6.
    H. E. Flores and A. W. Galston. Polyamines and plant stress: Activation of putrescine biosynthesis by osmotic shock. Science 217: 1259 (1982).PubMedCrossRefGoogle Scholar
  7. 7.
    A. Kallio, P. P. McCann, and P. Bey. DL-a-(difluoromethyl)-arginine: A potent enzyme-activated irreversible inhibitor of bacterial arginine decarboxylases. Biochem. 20: 3163 (1981).CrossRefGoogle Scholar
  8. 8.
    M. V. Rajam and A. W. Galston. The effects of some polyamine biosynthetic inhibitors on growth and morphology of phytopathogenic fungi. Plant and Cell Phvsiol. 26: 683 (1985).Google Scholar
  9. 9.
    Anonymous. Difco Manual of dehydrated culture media and reagents for microbiological and clinical laboratory procedures. (9th Edition) Difco Labs, Inc., Detroit, Michigan. 350 pp, 1953.Google Scholar
  10. 10.
    R. D. Slocum and A. W. Galston. Arginase-mediated hydrolysis of DFMA to DFMO in vivo. Pl. Phvsiol. 77 (Suppl): 45 (1985).Google Scholar
  11. 11.
    R. D. Slocum and A. W. Galston. Inhibition of polyamine biosynthesis in plants and plant pathogenic fungi, in: “Inhibition of Polyamine Metabolism,” P.M. McCann, A. E. Pegg, and A. Sjoerdsma, eds., Academic Press, New York (1987).Google Scholar
  12. 12.
    M. V. Rajam, L. H. Weinstein, and A. W. Galston. Prevention of a plant disease by specific inhibition of fungal polyamine biosynthesis. Proc. Natl. Acad. Sci. (USA) 82: 6874 (1985).CrossRefGoogle Scholar
  13. 13.
    M. V. Rajam, L. H. Weinstein, and A. W. Galston. Kinetic studies on the control of the bean rust fungus (Uromyces phaseoli L.) by an inhibitor of polyamine biosynthesis. Pl. Phvsiol. 82: 485 (1986).CrossRefGoogle Scholar
  14. 14.
    W. K. Kim. Folate and polyamine content of undifferentiated and differentiated wheat stem rust uredosporelings. Can. Jour. Bot. 49: 119 (1971)Google Scholar
  15. 15.
    L. H. Weinstein, J. F. Osmeloski, S. H. Wettlaufer, and A. W. Galston. Protection of wheat against leaf and stem rust and powdery mildew diseases by inhibition of polyamine metabolism. Plant Science 51: 311 (1987).PubMedCrossRefGoogle Scholar
  16. 16.
    H. Mussell, J. Osmeloski, S. H. Wettlaufer, and L. Weinstein. Suppression of verticillium wilt of tomato by difluoromethylornithine, a suicidal inhibitor of polyamine biosynthesis. Plant Disease 71: 313 (1987).CrossRefGoogle Scholar
  17. 17.
    I. A. M. Cruickshank. Phytoalexins. Ann. Rev. Phytopath. 1: 351 (1963).CrossRefGoogle Scholar
  18. 18.
    H. Birecka, M. O. Garraway, R. J. Baumann, and P. P. McCann. Inhibition of ornithine decarboxylase and growth of the fungus Helminthosporium maydis. Plant Phvsiol. 80: 798 (1986)CrossRefGoogle Scholar
  19. 19.
    D. R. Walters. The effects of a polyamine biosynthesis inhibitor on infection of Vicia faba L. by the rust fungus, Uromyces vicia-fabae (Pers.) Schroet. New Phvtol. 104: 613 (1986).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Arthur W. Galston
    • 1
    • 2
  • Leonard H. Weinstein
    • 1
    • 2
  1. 1.Yale UniversityNew HavenUSA
  2. 2.Boyce Thompson InstituteIthacaUSA

Personalised recommendations