Effect of Spermine on Transfer RNA and Transfer RNA-Ribosome Interactions

  • Željko Kućan
  • Tatjana Naranda
  • Miroslav Plohl
  • Vesna Nöthig-Laslo
  • Ivana Weygand-Durašević
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 250)


Translation of genetic message requires a coordianted interplay of more than a hundred kinds of macromolecules. Besides the ribosomes, which are multicomponent ribonucleoprotein particles by their own nature, molecules of transfer RNA, aminoacyl-tRNA synthetases, soluble protein factors and mRNA are involved in the process. Ribosomes provide an unspecific stage for the codon-anticodon interaction and catalyze the peptide bond formation. Molecules of tRNA play a crucial and highly specific role in the over-all process: they are recognized by specific aminoacyl-tRNA synthetases to be charged with their cognate amino acids; the resulting aminoacyl-tRNAs are then brought, in the form of ternary complexes with GTP and the elongation factor Tu, to the decoding or A site of the ribo-some. There they are screened for the proper codon-anticodon matching and only the correct aminoacyl-tRNA is allowed to enter the transpeptidation reaction. The resulting peptidyl-tRNA is then translocated to the peptidyl or P site to serve as the peptidyl donor in the next round of translation. The process in its simplified form is shown in Figure 1.


Ternary Complex Spin Label Anticodon Loop tRNA Structure Anticodon Stem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T.T. Sakai and S.S. Cohen, Effects of Polyamines on the Structure and Reactivity of tRNA, Prog. Nucleic Acid Res. Mol.Biol., 17: 15 (1976).PubMedCrossRefGoogle Scholar
  2. 2.
    A.H. Schreier and P.R. Schimmel, Interaction of Polyamines with Fragments and Whole Molecules of Yeast Phenylalanine-Specific tRNA, J. Mol. Biol., 93: 323 (1975).PubMedCrossRefGoogle Scholar
  3. 3.
    P.H. Bolton and D.R. Kearns, Effects of Magnesium and Polyamines on the Structure of Yeast tRNATyi, Biochem. Biophys. Acta, 477: 10(1977).PubMedGoogle Scholar
  4. 4.
    S. Chousterman and F. Chapeville, Tyrosyl-tRNA Synthetase of E. coli B. Role of Magnesium Ions in the Reaction Catalyzed by the Enzyme, Eur. J. Biochem., 35: 46 (1973).PubMedCrossRefGoogle Scholar
  5. 5.
    T.N.E. Lövgren, A. Peterson, and R.B. Loftfield, The Mechanism of Aminoacylation of Transfer Ribonucelic Acid. The Role of Magnesium and Spermine in the Synthesis of Isoleucyl-tRNA, J. Biol. Chem., 253: 6702 (1978).PubMedGoogle Scholar
  6. 6.
    C. Jelenc and CG. Kurland, Nucleoside Triphosphate Regeneration Decreases the Frequency of Translation Errors, Proc. Natl. Acad. Sci. USA, 76: 3174 (1979).PubMedCrossRefGoogle Scholar
  7. 7.
    M. Plohl and Ž. Kućan, Effects of Spermine and Magnesium Ions on the Aminoacylation of Yeast tRNATyr, Biochemie, in press (1988).Google Scholar
  8. 8.
    G.J. Quigley and A. Rich, Structural Domains of Transfer RNA Molecules, Science, 194: 796 (1976).PubMedCrossRefGoogle Scholar
  9. 9.
    J.D. Robertus, J.E. Ladner, J.T. Finch, D. Rhodes, R.S. Brown, B.F.C. Clark, and A. Klug, Structure of Yeast Phenylalanine tRNA at 3Å resolution, Nature, 250: 546 (1974).PubMedCrossRefGoogle Scholar
  10. 10.
    G.J. Quigley, M.M. Teeter, and A. Rich, Structural Analysis of Spermine and Magnesium Ion Binding to Yeast Phenylalanine Transfer RNA, Proc. Natl. Acad. Sci. USA, 75: 64 (1978).PubMedCrossRefGoogle Scholar
  11. 11.
    S.R. Holbrook, J.L. Sussman, R.W. Warant, and S.H. Kim, Crystal Structure of Yeast Phenylalanine Transfer RNA II. Structural Features and Functional Implications, J. Mol. Biol., 123: 631 (1978).PubMedCrossRefGoogle Scholar
  12. 12.
    K. Zakrzewska and B. Pullman, Spermine-Nucleic Acid Interactions: A Theoretical Study, Biopolymers, 25: 375 (1986).PubMedCrossRefGoogle Scholar
  13. 13.
    T.T. Sakai, R. Forget, I. Jacqueline, C.E. Freda, and S.S. Cohen, The Binding of Polyamines and of Ethidium Bromide to tRNA, Nucleic Acid Res., 2: 1005 (1975).PubMedCrossRefGoogle Scholar
  14. 14.
    Y. Takeda and T. Ohnishi, Polyamines and Protein Synthesis. IV. Stimulation of Aminoacyl tRNA Formation by Polyamines, Biochem. Biophys. Res. Commun., 37: 917 (1969).PubMedCrossRefGoogle Scholar
  15. 15.
    J.L. Leroy and M. Gueron, Electrostatic Effects in Divalent Ion Binding to tRNA, Biopolymers, 16: 2429 (1977).PubMedCrossRefGoogle Scholar
  16. 16.
    I. Weygand-Durašević, V. Nöthig-Laslo, J.N. Herak, and Ž. Kućan, Conformational Changes in Yeast tRNATyr Revealed by EPR Spectra of Spin-Labelled N6-(△2-Isopentenyl)-adenosine Residue. Biochim. Biophys. Acta, 479: 332 (1977).PubMedGoogle Scholar
  17. 17.
    I. Weygand-Durašević, V. Nöthig-Laslo, and Ž. Kućan, Involvement of the 3’ Side of the Anticodon Loop of Yeast tRNATyr in Messenger-Free Binding to Ribosomes. An Electron-Spin Resonance Study, Eur. J. Biochem., 139: 541 (1984).PubMedCrossRefGoogle Scholar
  18. 18.
    I. Weygand-Durasevic, T.A. Cruse, and B.F.C. Clark, The Influence of Elongation Factor-Tu GTP and Anticodon-Anticodon Interaction on the Anticodon Loop Conformation of Yeast tRNATyr, Eur. J. Biochem., 116: 59 (1981).PubMedCrossRefGoogle Scholar
  19. 19.
    V. Nöthig-Laslo, I. Weygand-Durašević, T. Živković, and Ž. Kućan, Binding of Spermine to tRNATyr Stabilizes the Conformation of the Anticodon Loop and Creates Binding Sites for Divalent Cations, Eur. J. Biochem., 117: 263 (1981).PubMedCrossRefGoogle Scholar
  20. 20.
    V. Nöthig-Laslo, I. Weygand-Durašević, and Ž. Kućan, Structural Changes of Yeast tRNATyr Caused by the Binding of Divalent Ions in the Presence of Spermine, J. Biomol. Struct. Dynamics, 2: 941 (1985).CrossRefGoogle Scholar
  21. 21.
    C.C. Allende, J.E. Allende, M. Gatica, J. Celis, G. Mora, and M. Matamala, The Aminoacyl Ribonucleic Acid Synthetase I. Properties of the Threonyladenylate-Enzyme Complex, J. Biol. Chem., 241: 2245 (1966).PubMedGoogle Scholar
  22. 22.
    E. Holler, Isoleucyl Acid Synthetase of E. coli B. Effects of Magnesium and Spermine on the Amino Acid Activation Reaction, Biochemistry, 12: 1142 (1973).PubMedCrossRefGoogle Scholar
  23. 23.
    Ž. Kućan and R.W. Chambers, Purification of Tyrosine-tRNA Ligase from Saccharomyces cerevisiae S288C, J. Biochem. (Tokyo), 73: 811 (1973).Google Scholar
  24. 24.
    A.C. Carr, G.L. Igois, G.R. Penzer, and J.A. Plumbridge, The Effect of Spermine and Mg2+ on the Catalytic Mechanism of Isoleucin: tRNA Ligase, Eur. J. Biochem., 54: 169 (1975).PubMedCrossRefGoogle Scholar
  25. 25.
    S. Pestka, Inhibitors of Protein Synthesis, in “Molecular Mechanism of Protein Synthesis”, H. Weissbac and S. Pestka, eds., Academic Press, New York (1977).Google Scholar
  26. 26.
    R. Rosset and L. Gorini, A Ribosomal Ambiguity Mutation, J. Mol. Biol., 39: 95 (1969).PubMedCrossRefGoogle Scholar
  27. 27.
    K.A. Abraham, S. Olsnes, and A. Pihl, Fidelity of Protein Synthesis in vitro is Increased in the Presence of Spermidine, FEBS Lett., 101: 93 (1979).PubMedCrossRefGoogle Scholar
  28. 28.
    G.Z. Yusupova, N.V. Belitsina, and A.S. Spirin, Template-Free Ribosomal Synthesis of Polypeptide Chains from Aminoacyl-tRNA, FEBS Lett., 206: 42 (1986.CrossRefGoogle Scholar
  29. 29.
    Ž. Kućan, On the Role of Spermine in Protein Synthesis, in “The Roots of Modern Biochemistry”, H. Kleinkauf, H. von Döhren, and L. Jaenicke, eds. Walter de Gruyter, Berlin (1988).Google Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Željko Kućan
    • 1
  • Tatjana Naranda
    • 1
  • Miroslav Plohl
    • 2
  • Vesna Nöthig-Laslo
    • 2
  • Ivana Weygand-Durašević
    • 1
  1. 1.Department of Chemistry, Faculty of ScienceUniversity of ZagrebYugoslavia
  2. 2.Rugjer Bošković InstituteZagrebYugoslavia

Personalised recommendations