Polyamines Stimulate the “In Vitro” Transport of the Precursor of Ornithine Carbamoyltransferase into Rat Liver Mitochondria

  • José Hernández-Yago
  • Carmen González-Bosch
  • Vicente J. Miralles
  • María-Jesús Marcote
  • Santiago Grisolía
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 250)


Most mitochondrial proteins are coded by nuclear genes, synthesized outside mitochondria, and imported into these organelles in a post-translational event (1). The import process usually involves the following steps: 1) synthesis of a precursor polypeptides with an amino-terminal extension (signal peptide), on free cytoplasmic polysomes, 2) binding of the precursor to a receptor-like component on the mitochondrial surface, 3) energy-dependent translocation across both mitochondrial membranes, possibly through “contact sites” between outer and inner membranes, 4) removal of the amino-terminal extension by a chelator-sensitive protease in the mitochondrial matrix, and 5) mature proteins location into their functional sites. Exceptions to this sequence of events include apocytochrome c and all proteins of the outer membrane which are synthesized without a leading peptide and transported into mitochondria without need of a membrane potential.


Mitochondrial Protein Creatine Phosphate Contact Site Transport Medium Cytosolic Extract 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Hay, P. Bohni and S. Gasser, How mitochondria import proteins, Biochim. Biophys. Acta 779: 65–87 (1984).PubMedGoogle Scholar
  2. 2.
    M. Mori, T. Morita, F. Ikeda, Y. Amaya, M. Tatibana and P. Cohen, Synthesis, intracellular transport, and processing of the precursor for mitochondrial ornithine transcarbamylase and carbamoyl— phosphate synthetase I in isolated hepatocytes, Proc. Natl. Acad. Sci. USA 78: 6056–6060 (1981).PubMedCrossRefGoogle Scholar
  3. 3.
    C. Argan, C. J. Lusty and C. G. Shore, Membrane and cytosolic components affecting transport of the precursor for ornithine carbamyl-transferase into mitochondria, J. Biol. Chenu 258: 6667–6670 (1983).Google Scholar
  4. 4.
    S. Miura, M. Mori and M. Tatibana, Transport of ornithine carbamoyl-transferase precursor into mitochondria, J. Biol. Chem. 258: 6671–6674 (1983).PubMedGoogle Scholar
  5. 5.
    F. Firgaira, J. Hendrick, F. Kalousek, J. Kraus and L. Rosenberg, RNA required for import of precursor proteins into mitochondria, Science 226: 1319–1322 (1984).PubMedCrossRefGoogle Scholar
  6. 6.
    C. Gonzalez-Bosch, V. J. Miralles, J. Hernández-Yago and S. Grisolía, Spermidine and spermine stimulate the transport of the precursor of ornithine carbamoyltransferase into rat liver mitochondria, Biochem. Biophys. Res. Commun. 149: 21–26 (1987).PubMedCrossRefGoogle Scholar
  7. 7.
    C. Tabor and H. Tabor, Polyamines, Annu. Rev. Biochem. 53: 749–790 (1984).PubMedCrossRefGoogle Scholar
  8. 8.
    E. Canellakis, D. Viceps-Madore, D. A. Kyriakidis and J. S. Heller, The regulation and function of ornithine decarboxylase and of the polyamines, Curr. Top. Cell. Regul. 15: 155–202 (1979).PubMedGoogle Scholar
  9. 9.
    A. Toninello, F. Di Lisa, D. Siliprandi, and N. Siliprandi, Uptake of spermine by rat liver mitochondria and its influence on the transport of phosphate, Biochim. Biophys. Acta 815: 399–404 (1985).PubMedCrossRefGoogle Scholar
  10. 10.
    S. Lenzen, R. Hickethier and U. Panten, Interactions between spermine and Mg2+ on mitochondrial Ca2+ transport, J. Biol. Chem. 261: 16478–16483 (1986).PubMedGoogle Scholar
  11. 11.
    J. Phillips, and R. R. J. Chaffee, Restorative effects of spermine on oxidative phosphorylation and respiration in heat-aged mitochondria, Biochem. Biophys. Res. Commun. 108: 174–181 (1982).PubMedCrossRefGoogle Scholar
  12. 12.
    G. Knoll and D. Bricza, Changes in freeze-fractured mitochondrial membranes correlated to their energy state: dynamic interactions of their boundary membranes, Biochim. Biophys. Acta 733: 102–110 (1983).PubMedCrossRefGoogle Scholar
  13. 13.
    R. Van Venetie and A. J. Verkleij, Possible role of non-bilayer lipids in the structure of mitochondria: a freeze-fracture electron microscopy study, Biochim. Biophys. Acta 692: 397–405 (1982).PubMedCrossRefGoogle Scholar
  14. 14.
    M. Schleyer and W. Neupert, Transport of proteins into mitochondria: translocational intermediates spanning contact sites between outer and inner membranes, Cell 43: 339–350 (1985).PubMedCrossRefGoogle Scholar
  15. 15.
    D. Roise, S. J. Horvath, J. M. Tomich, J. H. Richards and G. Schatz, A chemically synthesized pre-sequence of an import mitochondrial protein can form an amphipathic helix and perturb natural and artificial phospholipid bilayers, EMBO J. 5: 1327–1334 (1986).PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • José Hernández-Yago
    • 1
  • Carmen González-Bosch
    • 1
  • Vicente J. Miralles
    • 1
  • María-Jesús Marcote
    • 1
  • Santiago Grisolía
    • 1
  1. 1.Instituto de Investigaciones CitológicasCaja de Ahorros de ValenciaValenciaSpain

Personalised recommendations