Transglutaminases and Their Regulation: Implications for Polyamine Metabolism

  • Peter J. A. Davies
  • E. Antonio Chiocca
  • James P. Basilion
  • Susmita Poddar
  • Joseph P. Stein
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 250)


Transglutaminases are a group of enzymes that catalyze the posttranslational modification of protein-bound glutamine residues. It appears that the major physiological role of these enzymes is to crosslink proteins by promoting the formation of isopeptide bonds between protein-bound glutamine and lysine residues. These enzymes also catalyze the covalent conjugation of polyamines to proteins and this latter activity has led to speculation about their involvement in the biology of polyamine action. In this report we would like to present a brief review of the theoretical and experimental evidence for considering transglutaminases as components in polyamine metabolism.


Retinoic Acid Chinese Hamster Ovary Cell Seminal Plasma Tissue Transglutaminase Polyamine Metabolism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. E. Folk and J. S. Finlayson, The ε-(γ-glytamyl)lysine crosslink and the catalytic role of transglutaminases, Adv. Protein Chem. 31:1-133 (1977).Google Scholar
  2. 2.
    L. Lorand, K. N. Parameswaran, P. Stenberg, Y. S. Tong, P. T. Velasco, N. A. Jonsson, L. Mikiver, and P. Moses, Specificity of guinea pig liver transglutaminase for amine substrates, Biochem. 18: 1756–1765 (1979).CrossRefGoogle Scholar
  3. 3.
    J. Shrode and J. E. Folk, Stereochemical aspects of amine substrate attachment to acyl intermediates of transglutaminases, J. Biol. Chem. 254: 653–661 (1979).Google Scholar
  4. 4.
    D. D. Clarke, M. J. Mycek, A. Neidle, and H. Waelsch, The incorporation of amines into protein, Arch. Biochem. Biophys. 79: 338–354 (1959).CrossRefGoogle Scholar
  5. 5.
    H. G. Williams-Ashman and Z. N. Cannelakis, Polyamines in mammalian biology and medicine. Perspect. Biol. Med. 22: 421–453 (1979).PubMedGoogle Scholar
  6. 6.
    J. Shrode and J. E. Folk, Transglutaminase-catalyzed cross-linking through diamines and polyamines, J. Biol. Chem. 253: 4837–4840 (1978).Google Scholar
  7. 7.
    O. M. Rennert, W. Y. Chan, and G. Griesman, Polyamine-peptide conjugates: proposed function, Physiol. Chem. Physics. 12: 441–450 (1980).Google Scholar
  8. 8.
    H. G. Williams-Ashman, Transglutaminases and the clotting of mammalian seminal fluids, Mol. Cell Biochem. 58: 51–61 (1984).PubMedCrossRefGoogle Scholar
  9. 9.
    L. Lorand and H. G. Williams-Ashman, Clotting of proteins by extracellular transglutaminases, Acta Biochim. Biophys. Hungar. 22: 337–349 (1987).Google Scholar
  10. 10.
    M. K. Haddox and D. H. Russell, Differential conjugation of polyamines to calf nuclear and nucleolar proteins, J. Cell. Physiol. 109: 447–452 (1981).PubMedCrossRefGoogle Scholar
  11. 11.
    S. Beninanti, M. Piacentini, M. P. Argento-Ceru, S. Russo-Caia, and F. Autuori, Presence of di-and polyamines covalently bound to protein in rat liver, Biochim. Biophys. Acta 841: 120–126 (1985).CrossRefGoogle Scholar
  12. 12.
    R. T. Ambron and L. T. Kremzner, Post-translational modification of neuronal proteins: Evidence for transglutaminase activity in R2, the giant cholinergic neuron of aplysia, Proc. Natl. Acad. Sci. U.S.A. 79: 3442–3446 (1982).PubMedCrossRefGoogle Scholar
  13. 13.
    J. E. Folk, M. H. Park, S. I. Chung, J. E. Schrode, E. P. Lester, and H. L. Cooper, Polyamines as physiological substrates for transglutaminase, J. Biol. Chem. 255: 3695–3700 (1980).PubMedGoogle Scholar
  14. 14.
    S. Beninati, M. Piacentini, E. T. Cocuzzi, F. Autuori, and J. E. Folk, Covalent incorporation of polyamines as γ-glutamyl derivatives into CHO proteins, Biochim. Biophys. Acta. 952: 325–333 (1988).PubMedCrossRefGoogle Scholar
  15. 15.
    N. L. Parenteau, A. Pilato, and R. H. Rice, Induction of keratinocyte type I transglutaminase in epithelial cells of the rat, Differentiation 33: 130–138 (1986).PubMedCrossRefGoogle Scholar
  16. 16.
    N. Martinez, H. C. Kim, J. E. Girard, T. P. Nigra, D. H. Strong, S. I. Chung, and J. E. Folk, Epidermal and hair follicle transglutaminases, J. Biol. Chem. 263: 4236–4241 (1988).Google Scholar
  17. 17.
    S. H. Yuspa, T. Ben, H. Hennings, and U. Lichti, Phorbol ester tumor promoters induce epidermal transglutaminase activity, Biochem. Biophys. Res. Commun. 97: 700–708 (1980).PubMedCrossRefGoogle Scholar
  18. 18.
    P. J. Birckbichler, G. R. Orr, E. Conway, and M. K. Patterson, Transglutaminase activity in normal and transformed cells, Cancer Res. 37: 1340–1344 (1977).PubMedGoogle Scholar
  19. 19.
    U. Lichti, T. Benn, and S. H. Yuspa, Retinoic acid induced transglutaminase in mouse epidermal cells is distinct from epidermal transglutaminase, J. Biol. Chem. 260: 1422–1426 (1985).PubMedGoogle Scholar
  20. 20.
    K. F. Scott, F. L. Meyskens, Jr., and D. H. Russell, Retinoids increase transglutaminase activity and inhibit ornithine decarboxylase activity in Chinese hamster ovary cells and in melanoma cells stimulated to differentiate, Proc. Natl. Acad. Sci. U.S.A. 79: 4093–4097 (1982).PubMedCrossRefGoogle Scholar
  21. 21.
    G. Schroff, C. Neumann, and C. Sorg, Transglutaminase as a marker for subsets of murine macrophages, Eur. J. Immunol. 11: 637–642 (1981).PubMedCrossRefGoogle Scholar
  22. 22.
    R. W. Leu, M. J. Herriott, P. E. Moore, G. R. Orr, and P. J. Birckbichler, Enhanced transglutaminase activity associated with macrophage activation, Exp. Cell Res. 141: 191–199 (1982).PubMedCrossRefGoogle Scholar
  23. 23.
    R. Adany, A. Belkin, T. Vasilevskaya, and L. Muszbek, Identification of blood coagulation factor XIIIa in human peritoneal macrophages, Eur. J. Cell Biol. 38: 171–173 (1985).PubMedGoogle Scholar
  24. 24.
    M. P. Murtaugh, K. Mehta, J. Johnson, M. Myers, R. L. Juliano, and P.J.A. Davies, Induction of tissue transglutaminase in mouse peritoneal macrophages, J. Biol. Chem. 258: 11074–11081 (1983).PubMedGoogle Scholar
  25. 25.
    P. J. A. Davies, W. T. Moore, Jr., and M. P. Murtaugh, Retinoid-regulated gene expression in normal and leukemic myeloid cells, BioEssays 1: 160–165 (1984).CrossRefGoogle Scholar
  26. 26.
    W. T. Moore, Jr., M. P. Murtaugh, and P. J. A. Davies, Retinoic acid-induced expression of tissue transglutaminase in mouse peritoneal macrophages, J. Biol. Chem. 259: 12794–12802 (1984).PubMedGoogle Scholar
  27. 27.
    M. P. Murtaugh, O. Dennison, J. P. Stein, and P. J. A. Davies, Retinoic acid-induced gene expression in normal and leukemic myeloid cells, J. Exp. Med. 163: 1325–1330 (1986).PubMedCrossRefGoogle Scholar
  28. 28.
    E. A. Chiocca, P. J. A. Davies, and J. P. Stein, The molecular basis of retinoid action: transcriptional regulation of tissue transglu-taminase gene expression in macrophages, J. Biol. Chem. In Press.Google Scholar
  29. 29.
    E. A. Chiocca, P. J. A. Davies, and J. P. Stein, The regulation of tissue transglutaminase gene expression as a molecular model for retinoid effects on proliferation and differentiation, J. Cell. Biochem. In Press.Google Scholar
  30. 30.
    P. J. A. Davies, M. P. Murtaugh, W. T. Moore, Jr., G. S. Johnson, and D. Lucas, Retinoic acid-induced expression of tissue transglutaminase in human promyelocytic leukemia (HL-60) cells, J. Biol. Chem. 260: 5166–5174 (1985).PubMedGoogle Scholar
  31. 31.
    M. P. Murtaugh, W. T. Moore, Jr., and P. J. A. Davies, Cyclic AMP potentiates the retinoic acid-induced expression of tissue transglutaminase in peritoneal macrophages, J. Biol. Chem. 261: 614–621 (1986).PubMedGoogle Scholar
  32. 32.
    U. Lichti and S. H. Yuspa, Modulation of tissue and epidermal transglutaminases in mouse epidermal cells after treatment with 12-0 tetradecanoylphorbol-13-acetate and/or retinoic acid in vivo and in culture, Cancer Res. 48: 74–81 (1988).PubMedGoogle Scholar
  33. 33.
    R. Lotan, Effects of vitamin A and its analogs (retinoids) on normal and neoplastic cells, Biochim. Biophys. Acta, 605: 33–91 (1980).PubMedGoogle Scholar
  34. 34.
    L. Lorand and S. M. Conrad, Transglutaminases, Mol. Cell. Biochem. 58: 9–35 (1984).PubMedCrossRefGoogle Scholar
  35. 35.
    L. Fesus, V. Thomazy, and A. Falus, Induction and activation of tissue transglutaminase during programmed cell death, FEBS Letters 224: 104–108 (1987).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Peter J. A. Davies
    • 1
  • E. Antonio Chiocca
    • 1
  • James P. Basilion
    • 1
  • Susmita Poddar
    • 1
  • Joseph P. Stein
    • 1
  1. 1.Departments of Pharmacology and MedicineThe university of Texas Medical School at HoustonHoustonUSA

Personalised recommendations