Abnormalities of Polyamine Biosynthesis in Spinal Cord of Totally Gastrectomized Rats

  • G. Scalabrino
  • M. E. Ferioli
  • E. Lorenzini
  • R. Candiani
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 250)


Hematological and neurological sequelae are the two major manifestations in man of Addisonian pernicious anemia (PA)1. The degree of central nervous system (CNS) damage is not always well correlated with the severity of the anemia and therefore, the neurological disease in PA is not secondary to the anemia2. The neurological illness in PA chiefly affects the white matter of the dorsal and lateral columns of the spinal cord (SC) in man and can be reproduced experimentally in other mammals3, 4. It is generally considered that the major neuropathological feature in PA is an uneven and severe “demyelination” (spongiform degeneration)3, 4 of SC. The first full description of this demyelinating neuropathy was given by Russell, Batten and Collier5 at the beginning of this century, who named it “subacute combined degeneration” (SCD) of the SC. This term, however, fails to encompass all aspects of the disease, because it does not clearly suggest involvement of peripheral nerves and brain. Although since then many other terms for this neurological disorder have been tentatively introduced, the initial term, i. e., SCD, is generally widely used by most authors and will be used here by us.


Total Gastrectomy Pernicious Anemia Polyamine Biosynthesis Subacute Combine Degeneration Rousettus Aegyptiacus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. Herbert, Biology of disease. Megaloblastic anemias, Lab. Invest. 52: 3 (1985).PubMedGoogle Scholar
  2. 2.
    M.M. Wintrobe, “Clinical hematology”, Lea & Febiger, Philadelphia (1981), pp. 571–572.Google Scholar
  3. 3.
    L.W. Duchen and J.M. Jacobs, Nutritional deficiencies and metabolic disorders, in: “Greenfield’s Neuropathology”, J. Hume Adams, J.A.N. Conellis, and L.W. Duchen, eds., Edward Arnold, London (1981).Google Scholar
  4. 4.
    S.S. Pant, A.K. Asbury, and E.P. Richardson Jr., The mye-lopathy of pernicious anemia, Acta Neurol. Scand. 44 Suppl. 35: 8 (1968).Google Scholar
  5. 5.
    J.S.R. Russell, F.E. Batten, and J. Collier, Subacute combined degeneration of the spinal cord, Brain 23: 39 (1900).CrossRefGoogle Scholar
  6. 6.
    W.S. Beck, The megaloblastic anemias, in: “Hematology”, W.J. Williams, E. Beutler, A.J. Erslev, and M.A. Lichtman, McGraw-Hill Book Company, New York (1983).Google Scholar
  7. 7.
    J.M. Scott, J.J. Dinn, P. Wilson, and D.G. Weir, Patho-genesis of subacute combined degeneration: a result of methyl group deficiency, Lancet ii: 334 (1981).CrossRefGoogle Scholar
  8. 8.
    D.P. Agamanolis, M. Victor, J.W. Harris, J.D. Hines, E.M. Chester, and J.A. Kark, An ultrastructural study of subacute combined degeneration of the spinal cord in vitamin B12-deficient Rhesus monkeys, J. Neuropathol. Exp. Neurol. 37: 273 (1978).PubMedCrossRefGoogle Scholar
  9. 9.
    J.J. Dinn, S. McCann, P. Wilson, B. Reed, D. Weir, and J. Scott, Animal model for subacute combined degeneration, Lancet ii: 1154 (1978).CrossRefGoogle Scholar
  10. 10.
    J. Van Der Westhuyzen, and J. Metz, Tissue S-adenosyl-methionine levels in fruits bats (Rousettus aegyptiacus) with nitrous oxide-induced neuropathy, Br. J. Nutr. 50: 325 (1983).PubMedCrossRefGoogle Scholar
  11. 11.
    R. Green, A.V. van Tonder, G.J. Oettle, G. Cole, and J. Metz, Neurological changes in fruit bats deficient in vitamin B12, Nature, 254: 148 (1975).PubMedCrossRefGoogle Scholar
  12. 12.
    D.P. Agamanolis, E.M. Chester, M. Victor, J.A. Kark, J.D. Hines, and J.W. Harris, Neuropathology of experimental vitamin B12 deficiency in monkeys, Neurology, 26: 905 (1976).PubMedCrossRefGoogle Scholar
  13. 13.
    A.M. Goodman, J.W. Harris, and D. Kiraly, Studies in B12-deficient monkeys with combined system disease. I. B12-deficient patterns in bone marrow deoxyuridine suppression tests without morphologic or functional abnormalities, J. Lab. Clin. Med. 96: 772 (1980).Google Scholar
  14. 14.
    W. Jacobson, G. Gandy, and R.L. Sidman, Experimental subacute combined degeneration of the cord in mice. J. Path. 109: Pxiii (1973).Google Scholar
  15. 15.
    G. Gandy, W. Jacobson, and R. Sidman, Inhibition of a transmethylation reaction in the central nervous system an experimental model for subacute combined degeneration of the cord, J. Physiol. 233: 1P (1973).Google Scholar
  16. 16.
    I. Chanarin, Cobalamins and nitrous oxide: a review, J. Clin., Pathol. 33: 909 (1980).CrossRefGoogle Scholar
  17. 17.
    R.B. Layzer, Myeloneuropathy after prolonged exposure to nitrous oxide, Lancet ii: 1227 (1978).CrossRefGoogle Scholar
  18. 18.
    N.A. Sourial, J.A.L. Amess, and R.J. Amos, Role of S—adenosylmethionine in DNA synthesis and haemopoiesis, Scand. J. Haematol. 34: 303 (1985).PubMedCrossRefGoogle Scholar
  19. 19.
    I. Chanarin, Megaloblastic anaemia, cobalamin, and folate, J. Clin. Pathol. 40: 978 (1987).PubMedCrossRefGoogle Scholar
  20. 20.
    I. Chanarin, R. Deacon, M. Lumb, M. Muir, and J. Perry, Cobalamin-folate interrelations: a critical review, Blood 66: 479 (1985).PubMedGoogle Scholar
  21. 21.
    M. Muir, and I. Chanarin, Conversion of endogenous cobalamins into microbiologically-inactive cobalamin analogues in rats by exposure to nitrous oxide, Br. J. Haematol. 58: 517 (1984).PubMedCrossRefGoogle Scholar
  22. 22.
    G. Scalabrino, M.E. Ferioli, and G. Luccarelli, Polyamine biosynthesis in primary tumors of human central nervous system: review of current knowledge, Progr. Neurobiol. 25: 289 (1985).CrossRefGoogle Scholar
  23. 23.
    O. Heby, Role of polyamines in the control of cell proliferation and differentiation, Differentiation 19: 1 (1981).PubMedCrossRefGoogle Scholar
  24. 24.
    N. Seiler, and K. Deckardt, Association of putrescine, spermidine, spermine, and GABA with structural elements of brain cells, Neurochem Res. 1: 469 (1976).CrossRefGoogle Scholar
  25. 25.
    G.G. Shaw, The polyamines in the central nervous system, Biochem. Pharmaco1. 28: 1 (1979).CrossRefGoogle Scholar
  26. 26.
    J. Perry, I. Chanarin, R. Deacon, and M. Lumb, Chronic cobalamin inactivation impairs folate polyglutamate synthesis in the rat, J. Clin. Invest., 71: 1183 (1983).PubMedCrossRefGoogle Scholar
  27. 27.
    G. Scalabrino, M.E. Ferioli, R. Nebuloni, and F. Fraschini, Effects of pinealectomy on the circadian rhythms of polyamine biosynthetic decarboxylases and tyrosine aminotransferase in different organs of the rats, Endocrinology 104: 377 (1979).PubMedCrossRefGoogle Scholar
  28. 28.
    J.J. Brink, R.A. Beck, J.S. Miller, and S.W. Thenen, Relationship of urinary methylmalonic acid to vitamin B12 concentrations and hematologic changes in rats fed vitamin B12-deficient diets, J. Nutr. 110: 1338 (1980).PubMedGoogle Scholar
  29. 29.
    “Manual of histologie staining methods of the Armed Forces Institute of Pathology”, L.G. Luria, ed., McGraw-Hill Book Company, New York (1968), p. 212.Google Scholar
  30. 30.
    “Manual of histologie staining methods of the Armed Forces Institute of Pathology”, L.G. Luria, ed., McGraw-Hill Book Company, New York (1968), p. 203.Google Scholar
  31. 31.
    E.L. House, and B. Pansky, “A functional approach to neuroanatomy”, McGraw-Hill Book Company, New York (1967), p. 118.Google Scholar
  32. 32.
    C. Fehling, M. Jägerstad, B. Äkesson, J. Axelsson, and A. Brun, Effects of vitamin B12 deficiency on lipid metabolism of the rat liver and nervous system, Br, J. Nutr. 39: 501 (1978).CrossRefGoogle Scholar
  33. 33.
    R. Deacon, M. Lumb, J. Perry, I. Chanarin, B. Minty, M.J. Halsey, and J.F. Nunn, Selective inactivation of vitamin B12 in rats by nitrous oxide, Lancet ii: 1023 (1978).CrossRefGoogle Scholar
  34. 34.
    M. Lumb, N. Sharer, R. Deacon, P. Jennings, P. Purkiss, J. Perry, and I. Chanarin, Effects of nitrous oxideinduced inactivation of cobalamin on methionine and S-adenosylmethionine metabolism in the rat, Biochim. Biophys. Acta 756: 354 (1983).PubMedCrossRefGoogle Scholar
  35. 35.
    T.O. Eloranta, and A.M. Raina, S-Adenosylmethionine metabolism and its relation to polyamine synthesis in rat liver, Biochem. J. 168: 179 (1977).PubMedGoogle Scholar
  36. 36.
    M.J. Tisdale, Effect of methionine deprivation on S—adenosylmethionine decarboxylase of tumour cells, Biochim. Biophys. Acta 675: 366 (1981).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • G. Scalabrino
    • 1
  • M. E. Ferioli
    • 1
  • E. Lorenzini
    • 1
  • R. Candiani
    • 1
  1. 1.Institute of General Pathology and C.N.R. Centre for Research in Cell PathologyUniversity of MilanMilanoItaly

Personalised recommendations