Estrogenic Control of Spermidine/Spermine N1-Acetyltransferase Activity in Rat Uterus

  • Antonio Perin
  • Angela Sessa
  • M. Alfonsina Desiderio
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 250)


It is widely accepted that specific intracellular receptor proteins are implicated in the estrogen regulation of gene expression, growth and differentiation in target cells. The unoccupied forms of these receptors, as suggested by Jensen and Jacobson1 and Gorski et al.,2 reside primarily in the cytoplasm and translocate to the nucleus after hormone interaction. A revision of this classical “two-step” model has recently indicated that both native and ligand-bound forms of the receptors are localized in the nucleus, as supported by biochemical3 and immunocytochemical4 data. The binding of estrogen with receptor leads to a change in the conformational state of the protein, which increases its affinity for nuclear components and DNA.3, 4 A number of nuclear acceptor sites have been proposed, including specific DNA sequences,5 ribonucleoprotein,6 basic nonhistone proteins, nuclear matrix,8 and acidic nonhistone protein DNA complexes.9 The binding of activated receptor with DNA or other nuclear components triggers the synthesis of specific proteins, growth, and differentiation in responsive tissues.


Estrous Cycle Ornithine Decarboxylase Diamine Oxidase Polyamine Metabolism Polyamine Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. V. Jensen and H. I. Jacobson, Basic guides to the mechanism of estrogen action, Recent Prog. Horm. Res. 18: 387 (1962).Google Scholar
  2. 2.
    J. Gorski, D. Toft, G. Shyamala, D. Smith, and A. Notides, Hormone receptors: studies on the interaction of estrogen with the uterus, Recent Prog. Horm. Res. 24: 45 (1968).PubMedGoogle Scholar
  3. 3.
    W. V. Welshons, M. E. Lieberman, and J. Gorski, Nuclear localization of unoccupied oestrogen receptors, Nature 307: 747 (1984).PubMedCrossRefGoogle Scholar
  4. 4.
    W. J. King and G. L. Greene, Monoclonal antibodies localize oestrogen receptor in the nuclei of target cells, Nature 307: 745 (1984).PubMedCrossRefGoogle Scholar
  5. 5.
    J. P. Jost, M. Geiser, and M. Seldran, Specific modulation of the transcription of cloned avian vitellogenin II gene by estradiolreceptor complex in vitro, Proc. Natl. Acad. Sci. USA 82: 988 (1985).PubMedCrossRefGoogle Scholar
  6. 6.
    T. Ling and S. Liao, Association of the uterine 17β-estradiol receptor complex with ribonucleoprotein in vitro and in vivo, J. Biol. Chem. 249: 4671 (1974).Google Scholar
  7. 7.
    G. A. Puca, V. Sica, and E. Nola, Identification of a high affinity nuclear acceptor site for estrogen receptor of calf uterus, Proc. Natl. Acad. Sci. USA 71: 979 (1974).PubMedCrossRefGoogle Scholar
  8. 8.
    E. R. Barrack and D. S. Coffey, The specific binding of estrogens and androgens to the nuclear matrix of sex hormone responsive tissues, J. Biol. Chem. 255: 7265 (1980).PubMedGoogle Scholar
  9. 9.
    T. C. Spelsberg, B. A. Littlefield, R. Seelke, G. Martin-Dani, H. Toyoda, P. Boyd-Leinen, C. Thrall, and O. L. Kon, Role of specific chromosomal proteins and DNA sequences in the nuclear binding sites for steroid receptors, Recent Prog. Hoxm. Res. 39: 463 (1983).Google Scholar
  10. 10.
    W. V. Vedeckis, Steroid hormone receptor structure in normal and neoplastic cells, in: “Hormonally Responsive Tumors”, V. P. Hollander, ed., Academic Press, New York (1985).Google Scholar
  11. 11.
    W. W. Grody, W. T. Schrader, and B. W. 0’Malley, Activation, transformation and subunit structure of steroid hormone receptors, Endocr. Rev. 3: 141 (1982).PubMedCrossRefGoogle Scholar
  12. 12.
    P. R. Housley and W. B. Pratt, Direct demonstration of glucocorticoid-receptor phosphorylation by intact L cells, J. Biol. Chem. 258: 4630 (1983).PubMedGoogle Scholar
  13. 13.
    N. L. Weigel, J. S. Tash, A. R. Means, W. T. Schrader, and B. W. O’Malley, Phosphorylation of hen progesterone receptor by cAMP dependent protein kinase, Biochem. Biophys. Res. Commun. 102: 513 (1981).PubMedCrossRefGoogle Scholar
  14. 14.
    J. J. Dougherty, R. K. Puri, and D. O. Toft, Phosphorylation in vivo of chicken oviduct progesterone receptor, J. Biol. Chem. 257: 14226 (1982).PubMedGoogle Scholar
  15. 15.
    M. K. Dahmer, P. R. Housley, and W. B. Pratt, Effects of molybdate and endogenous inhibitors on steroid-receptor inactivation, transformation, and translocation, Annu. Rev. Physiol. 46: 67 (1984).PubMedCrossRefGoogle Scholar
  16. 16.
    T. Thomas and D. T. Kiang, Structural alterations and stabilization of rabbit uterine estrogen receptors by natural polyamines, Cancer Res. 47: 1799 (1987).PubMedGoogle Scholar
  17. 17.
    S. Cohen, B. W. O’Malley, and M. Stastny, Estrogenic induction of ornithine decarboxylase in vivo and in vitro, Science 170: 336 (1970).PubMedCrossRefGoogle Scholar
  18. 18.
    K. Käpyaho, H. Pösö, and J. Jänne, Role of propylamine transferases in hormone-induced stimulation of polyamine biosynthesis, Biochem. J. 192: 59 (1980).PubMedGoogle Scholar
  19. 19.
    A. M. Kaye, I. Icekson, and H. R. Lindner, Stimulation by estrogens of ornithine and S-adenosylmethionine decarboxylases in the immature rat uterus. Biochim. Biophys. Acta 252: 150 (1971).PubMedCrossRefGoogle Scholar
  20. 20.
    D. H. Russell and R. L. Taylor, Polyamine synthesis and accumulation in the castrated rat uterus after estradiol-17β stimulation, Endocrinology 88: 1397 (1971).PubMedCrossRefGoogle Scholar
  21. 21.
    D. W. Lundgren, P. M. Farrell, L. F. Cohen, and J. Hankins, Fluctuations of unbound whole blood polyamine levels during the menstrual cycle, Proc. Soc. Exp. Biol. Med. 152: 81 (1976).PubMedGoogle Scholar
  22. 22.
    O. Hernandes, L. M. Ballesteros, D. Mendez, and A. Rosado, Polyamine synthesis and polysome patterns in the rat uterus during the estrous cycle, Endocrinology 92: 1107 (1973).CrossRefGoogle Scholar
  23. 23.
    H. Nawata, R. S. Yamamoto, and L. A. Poirier, An inverse linear correlation between uterine and ovarian levels of ornithine decarboxylase and S-adenosylmethionine decarboxylase in the rat, Proc. Soc. Exp. Biol. Med. 167: 563 (1981).PubMedGoogle Scholar
  24. 24.
    M. S. Smith, M. E. Freeman, and J. D. Neill, The control of progesterone secretion during the estrous cycle and early pseudopregnancy in the rat: prolactin, gonadotropin and steroid levels associated with rescue of the corpus luteum of pseudo-pregnancy, Endocrinology 96: 219 (1975).PubMedCrossRefGoogle Scholar
  25. 25.
    K. Yoshinaga, R. A. Hawkins, and J. F. Stocker, Estrogen secretion by the rat ovary in vivo during the estrous cycle and pregnancy, Endocrinology 85: 103 (1969).PubMedCrossRefGoogle Scholar
  26. 26.
    R. L. Butcher, W. E. Collins, and N. W. Fugo, Plasma concentration of LH, FSH, prolactin, progesterone and estradiol-17β throughout the 4-day estrous cycle of the rat, Endocrinology 94: 1704 (1974).PubMedCrossRefGoogle Scholar
  27. 27.
    Y. Kobayashi, J. Kupelian, and D. V. Maudsley, Ornithine decarboxylase stimulation in rat ovary by luteinizing hormone, Science 172: 379 (1971).PubMedCrossRefGoogle Scholar
  28. 28.
    L. Persson, K. Isaksson, E. Rosengren, and F. Sundler, Distribution of ornithine decarboxylase in ovaries of rat and hamster during pro-oestrus, Acta Endocrinol. 113: 403 (1986).PubMedGoogle Scholar
  29. 29.
    S. K. Guha and J. Jänne, Decarboxylation of ornithine and adenosyl-methionine in rat ovary during pregnancy, Acta Endocrinol. 81: 793 (1976).PubMedGoogle Scholar
  30. 30.
    S. K. Guha and J. Jänne, The synthesis and accumulation of polyamines in reproductive organs of the rat during pregnancy, Biochim. Biophys. Acta 437: 244 (1976).PubMedCrossRefGoogle Scholar
  31. 31.
    W. A. Fogel, Diamine oxidase (DAO) and female sex hormones, Agents Actions 18: 4 (1986).CrossRefGoogle Scholar
  32. 32.
    M. E. Lippman and G. Bolan, Oestrogen-responsive human breast cancer in long term tissue culture, Nature 256: 592 (1975).PubMedCrossRefGoogle Scholar
  33. 33.
    M. Lippman, G. Bolan, and K. Huff, The effects of estrogens and antiestrogens on hormone-responsive human breast cancer in long-term tissue culture, Cancer Res. 36: 4595 (1976).PubMedGoogle Scholar
  34. 34.
    R. R. Weichselbaum, S. Hellman, A. J. Piro, J. J. Nove, and J. B. Little, Proliferation kinetics of a human breast cancer line in vitro following treatment with 17β-estradiol and 1-β-D-arabinofuranosylcytosine, Cancer Res. 38: 2339 (1978).PubMedGoogle Scholar
  35. 35.
    J. C. Allegra and M. E. Lippman, Growth of a human breast cancer cell line in serum-free hormone-supplemented medium, Cancer Res. 38: 3823 (1978).PubMedGoogle Scholar
  36. 36.
    A. Manni and C. Wright, Polyamines as mediators of estrogen action on the growth of experimental breast cancer in rats, J. Natl. Cancer Inst. 73: 511 (1984).PubMedGoogle Scholar
  37. 37.
    G. Lima and R. P. C. Shiu, Role of polyamines in estradiol-induced growth of human breast cancer cells, Cancer Res. 45: 2466 (1985).PubMedGoogle Scholar
  38. 38.
    D. Chalbos, F. Vignon, I. Keydar, and H. Rochefort, Estrogens stimulate cell proliferation and induce secretory proteins in a human breast cancer cell line (T47D). J. Clin. Endocrinol. Metab. 55: 276 (1982).PubMedCrossRefGoogle Scholar
  39. 39.
    F. Vignon, M. E. Lippman, H. Nawata, D. Derocq, and H. Rochefort, Induction of two estrogen-responsive proteins by antiestrogens in R27, a tamoxifen-resistant clone of MCF7 cells, Cancer Res. 44: 2084 (1984).PubMedGoogle Scholar
  40. 40.
    A. Manni, C. Wright, P. Feil, L. Baranao, L. Demers, M. Garcia, and H. Rochefort, Autocrine stimulation by estradiol-regulated growth factors of rat hormone-responsive mammary cancer: interaction with the polyamine pathway, Cancer Res. 46: 1594 (1986).PubMedGoogle Scholar
  41. 41.
    A. E. Pegg, Recent advances in the biochemistry of polyamines in eukaryotes, Biochem. J. 234: 249 (1986).PubMedGoogle Scholar
  42. 42.
    N. Seiler, Functions of polyamine acetylation, Can. J. Physiol. Pharmacol. 65: 2024 (1987).PubMedCrossRefGoogle Scholar
  43. 43.
    A. E. Pegg and G. Erwin, Induction of spermidine/spermine N1-acetyltransferase in rat tissues by polyamines, Biochem. J. 231: 285 (1985).PubMedGoogle Scholar
  44. 44.
    P. R. Libby, Calf liver nuclear N-acetyltransferases: purification and properties of two enzymes with both spermidine acetyltrans-ferase and histone acetyltransferase activities, J. Biol. Chem. 253: 23 (1978).Google Scholar
  45. 45.
    I. Matsui and A. E. Pegg, Effect of thioacetamide, growth hormone or partial hepatectomy on spermidine acetylase activity of rat liver cytosol, Biochim. Biophys. Acta, 633: 87 (1980).PubMedCrossRefGoogle Scholar
  46. 46.
    C. W. Tabor and H. Tabor, 1, 4-Diaminobutane (putrescine), spermidine, and spermine, Annu. Rev. Biochem. 45: 285 (1976).PubMedCrossRefGoogle Scholar
  47. 47.
    J. Jänne, H. Pösö, and A. Raina, Polyamines in rapid growth and cancer, Biochim. Biophys. Acta 473: 241 (1978).PubMedGoogle Scholar
  48. 48.
    C. W. Tabor and H. Tabor, Polyamines, Annu. Rev. Biochem. 53: 749 (1984).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Antonio Perin
    • 1
  • Angela Sessa
    • 1
  • M. Alfonsina Desiderio
    • 1
  1. 1.Institute of General Pathology and Center for Research on Cell Pathology C.N.R.MilanItaly

Personalised recommendations