Regulation of Protein Synthesis by Polyamines

  • Kazuei Igarashi
  • Kiyoshi Ito
  • Yuko Sakai
  • Toshihiro Ogasawara
  • Keiko Kashiwagi
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 250)


Polyamines have been implicated in numerous growth processes (1, 2). Since polyamines are cationic, they probably participate in many cellular processes through their binding to DNA, RNA, and phospholipids (3). The stimulatory influence of polyamines on some kinds of protein synthesis has been established from in vitro experiments with both Escherichia coli and eukaryotic cell-free systems (4–7) and from in vivo experiments with E. coli polyamine-requiring mutants and bovine polyamine-deficient lymphocytes (8–11). Findings from these latter studies indicate that an important in vivo function of polyamines is to stimulate the synthesis of specific proteins, such as the polyamine-induced protein of E. coli (9) and thymidine kinase of bovine lymphocytes (11). These proteins are formed in limited amounts in polyamine-deficient cells.


Ribosomal Protein Thymidine Kinase Ribosomal Subunit Thymidine Kinase Gene Thymidine Kinase Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. S. Cohen, “Introduction to the polyamines,” Prentice Hall, Englewood Cliffts, NJ (1971).Google Scholar
  2. 2.
    C. W. Tabor, and H. Tabor, Polyamines, Annu. Rev. Biochem. 53: 749 (1984).PubMedCrossRefGoogle Scholar
  3. 3.
    K. Igarashi, I. Sakamoto, N. Goto, K. Kashiwagi, R. Honma, and S. Hirose, Interaction between polyamines and nucleic acids or phospholipids, Arch. Biochem. Biophys. 219: 438 (1982).PubMedCrossRefGoogle Scholar
  4. 4.
    K. Igarashi, K. Sugawara, I. Izumi, C. Nagayama, and S. Hirose, Effect of polyamines on polyphenylalanine synthesis by Escherichia coli and rat liver ribosomes, Eur. J. Biochem. 48: 495 (1974).PubMedCrossRefGoogle Scholar
  5. 5.
    J. F. Atkins, J. B. Lewis, C. W. Anderson, and R. F. Gesteland, Enhanced differential synthesis of proteins in a mammalian cell-free system by addition of polyamines, J. Biol. Chem. 48: 5688 (1975).Google Scholar
  6. 6.
    K. Igarashi, M. Kojima, Y. Watanabe, K. Maeda, and S. Hirose, Stimulation of polypeptide synthesis by spermidine at the level of initiation in rabbit reticulocyte and wheat germ cell-free systems, Biochem. Biophys. Res. Commun. 97: 480 (1980).PubMedCrossRefGoogle Scholar
  7. 7.
    Y. Watanabe, K. Igarashi, and S. Hirose, Differential stimulation by polyamines of phage RNA directed synthesis of proteins, Biochim. Biophys. Acta 656: 134 (1981).PubMedGoogle Scholar
  8. 8.
    H. Tabor, and C. W. Tabor, Polyamine requirement for efficient translation of amber codons in vivo, Proc. Natl. Acad. Sci. U.S.A. 79: 7087 (1982).PubMedCrossRefGoogle Scholar
  9. 9.
    K. Mitsui, K. Igarashi, T. Kakegawa, and S. Hirose, Preferential stimulation of in vivo synthesis of a protein by polyamines in Escherichia coli: purification and properties of the specific protein, Biochemistry 23: 2679 (1984).PubMedCrossRefGoogle Scholar
  10. 10.
    K. Mitsui, R. Ohnishi, S. Hirose, and K. Igarashi, Necessity of polyamines for maximum in vivo synthesis of ßß’ subunits of RNA polymerase, Biochem. Biophys. Res. Commun. 123: 528 (1984).PubMedCrossRefGoogle Scholar
  11. 11.
    K. Igarashi, and D. R. Morris, Physiological effects in bovine lymphocytes of inhibiting polyamine synthesis with ethylglyoxal bis (guanylhydrazone), Cancer Res. 44: 5332 (1984).PubMedGoogle Scholar
  12. 12.
    D. V. Young, and P. R. Srinivasan, Regulation of macromolecular synthesis by putrescine in a conditional Escherichia coli putrescine auxotroph, J. Bacteriol. 112: 30 (1972).PubMedGoogle Scholar
  13. 13.
    B. B. Rudkin, P. S. Mamont, and N. Seiler, Decreased protein synthetic activity is an early consequence of spermidine depletion in rat hepatoma tissue culture cells, Biochem. J. 217: 731 (1984).PubMedGoogle Scholar
  14. 14.
    K. Igarashi, Y. Watanabe, K. Nakamura, M. Kojima, Y. Fujiki, and S. Hirose, Effect of spermidine pn N-formylmethionyl-tRNA binding to 30S ribosomal subunits and on N-formylmethionyl-tRNA dependent polypeptide synthesis, Biochem. Biophys. Res. Commun. 83: 806 (1978).PubMedCrossRefGoogle Scholar
  15. 15.
    Y. Watanabe, K. Igarashi, K. Mitsui, and S. Hirose, Differential stimulation by polyamines of phage DNA-directed in vitro synthesis of proteins, Biochim. Biophys. Acta 740: 362 (1983).PubMedGoogle Scholar
  16. 16.
    H. Tabor, C. W. Tabor, M. S. Cohn, and E. W. Hafner, Streptomycin resistance (rps L) produces an absolute requirement for polyamines for growth of an Escherichia coli strain unable to synthesize putrescine and spermidine [Δ(speA-speB) Δ speC], J. Bacteriol. 147: 702 (1981).PubMedGoogle Scholar
  17. 17.
    K. Igarashi, K. Kashiwagi, K. Kishida, T. Kakegawa, and S. Hirose, Decrease in the S1 protein of 30S ribosomal subunits in polyamine-requiring mutants of Escherichia coli grown in the absence of polyamines, Eur. J. Biochem. 114: 127 (1981).PubMedCrossRefGoogle Scholar
  18. 18.
    T. Kakegawa, S. Hirose, K. Kashiwagi, and K. Igarashi, Effect of polyamines on in vitro reconstitution of ribosomal subunits. Eur. J. Biochem. 158: 265 (1986).PubMedCrossRefGoogle Scholar
  19. 19.
    G. Van Dieijen, P. H. Van Knippenberg, and J. Van Duin, The specific role of ribosomal protein S1 in the recongnition of native phage RNA, Eur. J. Biochem. 64: 511 (1976).PubMedCrossRefGoogle Scholar
  20. 20.
    T. Yokota, K. Arai, and Y. Kaziro, Studies on 30S ribosomal protein S1 from E. coli. II. Functional properties, J. Biochem. (Tokyo) 86: 1739 (1976).Google Scholar
  21. 21.
    D. Oliver, and J. Beckwith, Regulation of a membrane component required for protein secretion in Escherichia coli, Cell 30: 311 (1982).PubMedCrossRefGoogle Scholar
  22. 22.
    L. L. Johnson, G. Rao, and A. Muench, Regulation of thymidine kinase enzyme level in serum stimulated mouse 3T6 fibroblasts, Exp. Cell. Res. 138 (1982).Google Scholar
  23. 23.
    M. Groudine, and C. Casimir, Post-transcriptional regulation of the chicken thymidine kinase gene, Nucl. Acids Res. 12: 1427 (1984).PubMedCrossRefGoogle Scholar
  24. 24.
    P. Stuart, M. Ito, C. Stewart, and S. E. Conrad, Induction of cellular thymidine kinase occurs at the mRNA level, Mol. Cell. Biol. 5: 1490 (1985).PubMedGoogle Scholar
  25. 25.
    C. J. Stewart, M. Ito, and S. E. Conrad, Evidence for transcription and post-transcriptional control of the cellular thymidine kinase gene, Mol. Cell. Biol. 7: 1156 (1987).PubMedGoogle Scholar
  26. 26.
    A. Kasid, N. E. Davidson, E. P. Gelman, and M. E. Lippman, Transcriptional control of thymidine kinase gene expression by estrogen and antiestrogens in HCF-7 human breast cancer cells, J. Biol. Chem. 261: 5562 (1986).PubMedGoogle Scholar
  27. 27.
    A. Efstratiadis, F. C. Kafatos, and T. Maniatis, The primary structure of rabbit ß-globin mRNA as determined from cloned DNA, Cell 10: 571 (1977).PubMedCrossRefGoogle Scholar
  28. 28.
    T. Kameji, and A. E. Pegg, Inhibition of mRNAs for ornithine decarboxylase and S-adenosylmethionine decarboxylase by polyamines, J. Biol. Chem. 262: 2427 (1977).Google Scholar
  29. 29.
    R. G. Crystal, A. W. Nienhuis, N. A. Elson, and W. F. Anderson, Initiation of globin synthesis. Preparation and use of reticulocyte ribosomes retaining initiation region messenger ribonucleic acid fragments, J. Biol. Chem. 247: 5357 (1972).PubMedGoogle Scholar
  30. 30.
    M. H. Schreier, and T. Staehelin, Initiation of mammalian protein synthesis: the importance of ribosome and initiation factor quality for the efficiency of in vitro systems, J. Mol. Biol. 73: 329 (1973).PubMedCrossRefGoogle Scholar
  31. 31.
    K. Igarashi, K. Kashiwagi, H. Hamasaki, A. Miura, T. Kakegawa, S. Hirose, and S. Matsuzaki, Formation of a compensatory polyamine by Escherichia coli polyamine-requiring mutants during growth in the absence of polyamines. J. Bacteriol. 166: 128 (1986).PubMedGoogle Scholar
  32. 32.
    O. H. Lowry, N. J. Rosebrough, A. L. Farr, and R. J. Randall, Protein measurement with the Folin phenol reagent, J. Biol. Chem. 193: 265 (1951).PubMedGoogle Scholar
  33. 33.
    K. Kashiwagi, and K. Igarashi, Nonspecific inhibition of Escherichia coli ornithine decarboxylase by various ribosomal proteins. Detection of a new ribosomal protein possessing strong antizyme activity, Biochim. Biophys. Acta 911: 180 (1987).PubMedCrossRefGoogle Scholar
  34. 34.
    A. Wada, Analysis of Escherichia coli ribosomal proteins by an improved two dimensional gel electrophoresis. I. Detection of four new proteins, J. Biochem. (Tokyo) 100: 1583 (1986).Google Scholar
  35. 35.
    A. Wada, and T. Sako, Primary structures of and genes for new ribosomal proteins A and B in Escherichia coli, J. Biochem. (Tokyo) 101: 817 (1987).CrossRefGoogle Scholar
  36. 36.
    R. R. Burgess, and J. J. Jendrisak, A procedure for the rapid, large-scale purification of Escherichia coli DNA-dependent RNA polymerase involving polymin P precipitation and DNA-cellulose chromatography, Biochemistry 14: 4634 (1975).PubMedCrossRefGoogle Scholar
  37. 37.
    J. W. B. Hershey, J. Yanov, K. Johnston, and J. L. Fekunding, Purification and characterization of protein synthesis initiation factors IF-1, IF-2, IF-3 from Escherichia coli, Arch. Biochem. Biophys. 182: 626 (1977).PubMedCrossRefGoogle Scholar
  38. 38.
    K. Igarashi, K. Terada, Y. Tango, K. Katakura, and S. Hirose, Demonstration by affinity chromatography of the cell-free sythesis of ribonuclease-specific immunoglobulin, J. Biochem. (Tokyo) 77: 383 (1975).Google Scholar
  39. 39.
    L. Philipson, P. Anderson, U. Olshevsky, R. Weinberg, and D. Baltimore, Translation of MuLv and MSV RNAs in nuclease-treated reticulocyte extracts; enhancement of the gag-pol polypeptide with yeast suppressor tRNA, Cell 13: 189 (1987).CrossRefGoogle Scholar
  40. 40.
    U. K. Laemmli, Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature 227: 680 (1970).PubMedCrossRefGoogle Scholar
  41. 41.
    R. A. Laskey, 3 and A14 D. Mills, Quantitative film detection of H and C in polyacrylamide gels by fluorography, Eur. J. Biochem. 56: 335 (1975).PubMedCrossRefGoogle Scholar
  42. 42.
    C. E. Seyfried, and D. R. Morris, Methods for the study of the physiological effects of inhibitors of polyamine biosynthesis in mitogen-activated lymphocytes, Methods Enzymol. 94: 373 (1983).PubMedCrossRefGoogle Scholar
  43. 43.
    J. M. Chirgwin, A. E. Przybyla, R. J. MacDonald, and W. J. Rutter, Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease, Biochemistry 18: 5294 (1979).PubMedCrossRefGoogle Scholar
  44. 44.
    H. D. Bradshow, Jr. and P. L. Deininger, Human thymidine kinase gene: molecular cloning and nucleotide sequence of a cDNA expressible in mammalian cells, Mol. Cell. Biol. 4: 2316 (1984).Google Scholar
  45. 45.
    D. Ayusawa, K. Shimizu, H. Koyama, S. Kaneda, K. Takeishi, and T. Seno, Cell-cycle-directed regulation of thymidylate synthetase messenger RNA in human dipioid fibroblasts stimulated to proliferate, J. Mol. Biol. 190: 559 (1986).PubMedCrossRefGoogle Scholar
  46. 46.
    M. Mach, M. W. White, M. Neubauer, J. L. Degen, and D. R. Morris, Isolation of a cDNA clone encoding S-adenosylmethionine decarboxylase. Expression of the gene in mitogen-activated lymphocytes, J. Biol. Chem. 261: 11697 (1986).PubMedGoogle Scholar
  47. 47.
    H. R. B. Pelham, and R. J. Jackson, An efficient mRNA-dependent translation system from reticulocyte lysates, Eur. J. Biochem. 67: 247 (1976).PubMedCrossRefGoogle Scholar
  48. 48.
    A. Krystosek, M. L. Cawthon, and D. Kabat, Improved methods for purification and assay of eukaryotic messenger ribonucleic acids and ribosomes. Quantitative analysis of their interaction in a fractionated reticulocyte cell-free system, J. Biol. Chem. 250: 6077 (1975).PubMedGoogle Scholar
  49. 49.
    K. Ito, and K. Igarashi, The increase by spermidine of fidelity of protamine synthesis in a wheat-germ cell-free system, Eur. J. Biochem. 156: 505 (1986).PubMedCrossRefGoogle Scholar
  50. 50.
    A. K. Falvey, and T. Staehelin, Structure and function of mammalian ribosomes. I. Isolation and characterization of active liver ribosomal subunits, J. Mol. Biol. 53: 1 (1970).PubMedCrossRefGoogle Scholar
  51. 51.
    H. M. Dintzis, Assembly of the peptide chains of hemoglobin Proc. Natl. Acad. Sci. U.S.A. 47: 247 (1961).PubMedCrossRefGoogle Scholar
  52. 52.
    A. Rossi-Fanelli, E. Antonini, and A. Caputo, Studies on the structure of hemoglobin. I. Physiological properties of human globin, Biochim. Biophys. Acta 30: 608 (1958).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Kazuei Igarashi
    • 1
  • Kiyoshi Ito
    • 1
  • Yuko Sakai
    • 1
  • Toshihiro Ogasawara
    • 1
  • Keiko Kashiwagi
    • 1
  1. 1.Faculty of Pharmaceutical SciencesInohana Campus Chiba UniversityChiba 280Japan

Personalised recommendations