Advertisement

Two Phases of Ornithine Decarboxylase Activation During Lymphocyte Mitogenesis

  • Tomas Mustelin
  • Tiina Pessa
  • Seppo Lapinjoki
  • Jukka Gynther
  • Tomi Järvinen
  • Terho Eloranta
  • Leif C. Andersson
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 250)

Abstract

Ornithine decarboxylase (ODC) has been implicated in the regulation of cell proliferation (Jänne et al., 1978). ODC is the rate-limiting enzyme in the cellular synthesis of the polyamines (Pegg 1986), which are organic cations required for many growth-related cellular functions (Hölttä et al., 1979, Fillingame et al., 1975). The activity of ODC correlates with the growth rate of cells., Highest activities are usually seen in late G1 phase of the cell cycle and there is a second smaller peak in G2. Malignant transformation is often accompanied by impaired regulation of ODC (Haddox et al., 1980, Sistonen et al., 1987).

Keywords

Jurkat Cell Cholera Toxin Pertussis Toxin Ornithine Decarboxylase Rapid Activation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blackmore, P.F., Bocckino, S.B., Waynick, L.E. and Exton, J.H., 1985, Role of a guanine nucleotide-binding regulatory protein in the hydrolysis of hepatocyte phosphatidylinositol-4, 5-bisphosphate by calcium-mobilizing hormones and the control of cell calcium., J. Biol. Chem., 260: 14477.PubMedGoogle Scholar
  2. Cockcroft, S. and Taylor, J.A., 1987, Fluoroaluminates mimic guanosine 5′-(γ-thio)triphosphate in activating the polyphosphoinositide phosphodiesterase of hepatocyte membranes., Biochem. J., 241: 409.PubMedGoogle Scholar
  3. Fidelus, R.K., Laughter, A.H. and Twomey, J.J., 1984, The role of mitogens and lymphokines in the induction of ornithine decarboxylase (ODC) in T lymphocytes., J. Immunol., 132: 1462.PubMedGoogle Scholar
  4. Fillingame, R.H., Jorstad, C.M. and Morris, D.R., 1975, Increased cellular levels of spermidine or spermine are rquired for optimal DNA synthesis in lymphocytes activated by concanavalin A., Proc. Natl. Acad. Sci. USA, 72: 4042.PubMedCrossRefGoogle Scholar
  5. Geiger, B., 1983, Membrane-cytoskeleton interaction., Biochim. Biophys. Acta, 737:305.PubMedGoogle Scholar
  6. Gilman, A.G., 1984, G-proteins and dual control of adenylate cyclase., Cell, 36: 577PubMedCrossRefGoogle Scholar
  7. Haddox, M.K., Magun, B.E. and Russell, D.H., 1980, Ornithine decarboxylase induction during G1 progression of normal and Rous Sarcoma Virus-transformed cells., Cancer Res., 40: 604.PubMedGoogle Scholar
  8. Hölttä, E., Jänne, J. and Hovi, T., 1979, Suppression of the formation of polysomes and macromolecules by DL-α-difluoromethylornithine and methyl-glyoxal bis (guanylhydrazone) in phytohaemagglutinin-activated human lymphocytes., Biochem. J., 178: 109.PubMedGoogle Scholar
  9. Hyvönen, T., Alakuijala, L., Karvonen, E., Pösö, H., Andersson, L.C. and Eloranta, T.O., 1-aminooxy-3-aminopropane reversibely prevents the proliferation of cultured baby hamster cells and the accumulation and excretion of putrescine, spermidine and acetylated polyamines. Biochem. J., in press.Google Scholar
  10. Jänne, J., Pösö, H. and Raina, A., 1978, Polyamines in rapid growth and cancer., Biochim. Biophys. Acta, 473:241.PubMedGoogle Scholar
  11. Kay, J.E. and Lindsay, V.J., 1973, Polyamine synthesis during lymphocyte activation. Exp. Cell Res., 77: 428.PubMedCrossRefGoogle Scholar
  12. Korpela, H., Hölttä, E., Hovi, T. and Jänne, J., 1981, Response of enzymes involved in the metabolism of polyamines to phytohaemagglutinin-induced activation of human lymphocytes. Biochem. J., 196: 733.PubMedGoogle Scholar
  13. Low, M.G. and Zilversmit, D.B., 1980, Role of phosphatidylinositol in attachment of alkaline phosphatase to membranes. Biochemistry, 19: 3913.PubMedCrossRefGoogle Scholar
  14. Mustelin, T., Pösö, H. and Andersson, L.C., 1986a, Role of G-proteins in T cell activation: non-hydrolysable GTP analogues induce early ornithine decarboxylase activity in human T lymphocytes. EMBO J., 5: 3287.PubMedGoogle Scholar
  15. Mustelin, T., Pösö, H., Iivanainen, A. and Andersson, L.C., 1986b, myo-ino-sitol reverses Li+-indueed inhibition of phosphoinositide turnover and ornithine decarboxylase induction during early lymphocyte activation., Eur. J. Immunol., 16: 859.PubMedCrossRefGoogle Scholar
  16. Mustelin, T., 1987, GTP-dependence of the transduction of mitogenic signals through the T3 complex in T lymphocytes, indicates the involvement of a G-protein. FEBS Letters, 213: 199.PubMedCrossRefGoogle Scholar
  17. Mustelin, T., Pösö, H., Lapinjoki, S.P., Gynther, J. and Andersson, L.C., 1987, Growth signal transduciton: Rapid activation of covalently bound ornithine decarboxylase during phosphatidylinositol breakdown., Cell, 49: 171.PubMedCrossRefGoogle Scholar
  18. Pegg, A.E., 1986, Recent advances in the biochemistry of polyamines in eukaryotes. Biochem. J., 234: 249.PubMedGoogle Scholar
  19. Pessa, T., Mustelin, T. and Andersson, L, C., Identification of GTP-binding proteins in T lymphocyte membranes by photoaffinity labeling with 32p-GTP. Cellular Basis of Immune Modulation, in press.Google Scholar
  20. Pohjanpelto, P., Virtanen, I. and Hölttä, E., 1981, Polyamine starvation causes dissappearance of actin filaments and microtubules in polyamine-auxotropic CHO cells. Nature, 293: 475PubMedCrossRefGoogle Scholar
  21. Sasakawa, N., Ishii, K., Yamamoto, S. and Kato, R., 1985, Induction of ornithine decarboxylase activity by 1-oleoyl-2-aeetyl-glycerol in isolated mouse epidermal cells., Biochem. Biophys. Res. Commun., 128: 913.PubMedCrossRefGoogle Scholar
  22. Scott, I.G., Pösö, H., Åkerman, K.E.O. and Andersson, L.C., 1984, Mitogens cause a rapid induction of ornithine decarboxylase activity in human T-lymphocytes., Biochem. Soc. Trans., 13: 934.Google Scholar
  23. Scott, I.G., Pösö, H., Åkerman, K.E.O. and Andersson, L.C., 1985, Rapid activation of ornithine decarboxylase by mitogenic (but not non-mito-genic) ligands to human T lymphocytes., Eur. J. Immunol., 15: 783.PubMedCrossRefGoogle Scholar
  24. Sistonen, L., Keski-Oja, J., Ulmanen, I., Hölttä, E., Wikgren, B-J.P. and Alitalo, K., 1987, Dose effects of transfected c-Ha-ras Val 12 oncogene in transformed cell clones. Exp. Cell Res., 168: 518.PubMedCrossRefGoogle Scholar
  25. Sternweis, P.C. and Gilman, A.G., 1982, Aluminium: A requirement for activation of the regulatory component of adenylate cyclase by fluoride., Proc. Natl. Acad. Sci. USA, 77: 6516.Google Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Tomas Mustelin
    • 1
  • Tiina Pessa
    • 1
  • Seppo Lapinjoki
    • 2
  • Jukka Gynther
    • 2
  • Tomi Järvinen
    • 2
  • Terho Eloranta
    • 3
  • Leif C. Andersson
    • 1
  1. 1.Department of PathologyUniversity of HelsinkiFinland
  2. 2.Department of Pharmaceutical ChemistryUniversity of KuopioFinland
  3. 3.Department of BiochemistryUniversity of KuopioFinland

Personalised recommendations