Regulation of Polyamine Synthesis in Mammalian Cells

  • Lo Persson
  • Ingvar Holm
  • Louise Stjernborg
  • Olle Heby
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 250)


Since the polyamines putrescine, spermidine and spermine are essential cellular components for growth and differentiation it is of no surprise that their synthesis is highly regulated. Disregarding arginase, which catalyzes the formation of ornithine, the rate-controlling steps in the biosynthesis of the polyamines are catalyzed by ornithine decarboxylase (ODC) and S-adenosylmethionine decarboxylase (AdoMetDC). Spermidine synthase and spermine synthase are present in relatively large amounts in cells and appear to be regulated by the supply of their substrates. Compared to the synthases the activities of ODC and AdoMetDC are very low, even when fully induced. Both ODC and AdoMetDC have remarkably fast turnover rates. In fact, they are among the shortest known for mammalian enzymes (1, 2).


Chinese Hamster Ovary Cell Ornithine Decarboxylase Ribonucleotide Reductase Arginase Activity Polyamine Synthesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. H. Russell and S.H. Snyder, Amine synthesis in regenerating rat liver. Extremely rapid turnover of ornithine decarboxylase, Molec. Pharmacol. 5: 253 (1969).Google Scholar
  2. 2.
    P. Hannonen, A. Raina, and J. Jänne, Polyamine synthesis in the regerating rat liver: stimulation of S-adenosylmethionine decarboxylase, and spermidine and spermine synthases after partial hepatectomy, Biochim. Biophys. Acta 273: 84 (1972).PubMedCrossRefGoogle Scholar
  3. 3.
    I. Matsui and A. E. Pegg, Increase in acetylation of spermidine in rat liver extracts brought about by treatment with carbon tetrachloride, Biochem. Biophys. Res. Commun. 92: 1009 (1980).PubMedCrossRefGoogle Scholar
  4. 4.
    N. Seiler, Amide-bond-forming reactions of polyamines, in: Polyamines in Biology and Medicine, D. R. Morris and L. J. Marton, eds., p. p. 127–149, Marcel Dekker, New york (1981)Google Scholar
  5. 5.
    I. Matsui, L. Wiegand and A. E. Pegg, Properties of spermidine N-acetyltransferase from livers of rats treated with carbon tetrachloride and its role in the conversion of spermidine into putrescine, J. Biol. Chem. 256: 2454 (1981).PubMedGoogle Scholar
  6. 6.
    L. Persson and A. E. Pegg, Studies of the induction of spernddine/spermine N1-acetyltransferase using a specific antiserum, J. Biol. Chem. 259: 12364 (1984).PubMedGoogle Scholar
  7. 7.
    A. E. Pegg and B. G. Erwin, Induction of spermidine/spermine N1-acetyltransferase in rat tissues by polyamines, Biochem. J. 231: 285 (1985).PubMedGoogle Scholar
  8. 8.
    L. Persson, Antibodies to ornithine decarboxylase: ininunochemical cross-reactivity, Acta Chem. Scand B36: 685 (1982).CrossRefGoogle Scholar
  9. 9.
    T. Kameji, Y. Murakami, K. Fujita and S. Hayashi, Purification and some properties of ornithine decarboxylase from rat liver, Biochim. Biophys. Acta 717: 111 (1982).PubMedCrossRefGoogle Scholar
  10. 10.
    J. E. Seely and A. E. Pegg, Changes in mouse kidney ornithine decarboxylase activity are brought about by changes in the amount of enzyme protein as measured by radioimmunoassay, J. Biol. Chem. 258: 2496 (1983).PubMedGoogle Scholar
  11. 11.
    C. E. Seyfried, O. A. Oleinik, J. L. Degen, K. Resing and D. R. Morris, Purification, properties and regulation of the level of bovine S-adenosylmethionine decarboxylase during lymphocyte mitogenesis, Biochim. Biophys. Acta 716: 169 (1982).PubMedCrossRefGoogle Scholar
  12. 12.
    A. Shirahata and A. E. Pegg, Regulation of S-adenosylmethionine decarboxylase activity in rat liver and prostate, J. Biol. Chem. 260: 9583 (1985).PubMedGoogle Scholar
  13. 13.
    L. McConlogue, M. Gupta, L. Wu and P. Coffino, Molecular cloning and expression of the mouse ornithine decarboxylase gene, Proc. Natl. Acad. Sci. USA 81: 540 (1984).PubMedCrossRefGoogle Scholar
  14. 14.
    K. K. Kbntula, T. K. Tbrkkeli, C. W. Bardin and O. A. Jänne, Androgen induction of ornithine decarboxylase mRNA in mouse kidney as studied by complemetary DNA, Proc. Natl. Acad. Sci. USA 81: 731 (1984).CrossRefGoogle Scholar
  15. 15.
    C. Kahana and D. Nathans, Isolation of cloned cDNA encoding mammalian ornithine decarboxylase Proc. Natl. Acad. Sci. USA 81: 3645 (1984).PubMedCrossRefGoogle Scholar
  16. 16.
    F. Berger, P. Szymanski, E. Read and G. Watson, Androgen-regulated ornithine decarboxylase mRNAs of mouse kidney, J. Biol. Chem. 259: 7941 (1984).PubMedGoogle Scholar
  17. 17.
    M. Mach, M. W. White, M. Neubauer, J. L. Degen and D. R. Morris, J. Isolation of a cDNA encoding S-adenosylmethionine decarboxylase. Expression of the gene in mitogen-activated lymphocytes, Biol. Chem. 261: 11697 (1986).Google Scholar
  18. 18.
    N. J. Hickok, P. J. Seppänen, G. L. Gunsalus and O. A. Jänne, Complete amino acid sequence of human ornithine decarboxylase deduced from complementary DNA, DNA 6: 179 (1987).PubMedCrossRefGoogle Scholar
  19. 19.
    H. J. Kranen, L. van de Zande, C. F. van Kreijl, A. Bisschop and B. Wieringa, Cloning and nucleotide sequence of rat ornithine decarboxylase cDNA, Gene 60: 145 (1987).PubMedCrossRefGoogle Scholar
  20. 20.
    L. Persson, S. M. Qredsson, S. Anehus and O. Heby, Ornithine decarboxylase inhibitors increase the cellular content of the enzyme: implications for translational regulation, Biochem. Biophys. Res Commun. 131: 239 (1985).PubMedCrossRefGoogle Scholar
  21. 21.
    J. S. Heller, W. F. Fong and E. S. Canellakis, Induction of a protein inhibitor to ornithine decarboxylase by the end products of its reaction, Proc. Natl. Acad. Sci. USA 73: 1858 (1976).PubMedCrossRefGoogle Scholar
  22. 22.
    T. Kitani and H. Fujisawa, Purification and some properties of a protein inhibitor (antizyme) of ornithine decarboxylase from rat liver, J. Biol Chem. 259: 10036 (1984).PubMedGoogle Scholar
  23. 23.
    T. G. O’Brien, O. Hietala, K. O’Donnell and M. Holmes, Activation of mouse epidermal tumor ornithine decarboxylase by GTP: evidence for different catalytic forms of the enzyme, Proc. Natl. Acad. Sci. USA 84: 8927 (1987).PubMedCrossRefGoogle Scholar
  24. 24.
    F. Meggio, F. Flamigni, C. M. Caldarera, C. Guarnieri and L. A. Pirma, Phosphorylation of rat heart ornithine decarboxylase by type-2 casein kinase, Biochem. Biophys. Res. Commun. 122: 997 (1984).PubMedCrossRefGoogle Scholar
  25. 25.
    F. Meggio, F. Flamigni, C. Guarnieri and L. A. Pinna, location of the phosphorylation site for casein kinase-2 within the amino acid sequence of ornithine decarboxylase, Biochim. Biophys. Acta 979: 114 (1987).CrossRefGoogle Scholar
  26. 26.
    L. Persson, J. E. Seely and A. E. Pegg, Investigation of the structure and rate of synthesis of ornithine decarboxylase protein in mouse kidney, Biochemistry 23: 3777 (1984).PubMedCrossRefGoogle Scholar
  27. 27.
    A. Katz and C. Kahana, Transcriptional activation of mammalian ornithine decartoxylase during stimulated growth, Mol. Cell. Biol. 7: 2641 (1987).PubMedGoogle Scholar
  28. 28.
    S. Rose-John, G. Rincke and F. Marks, The induction of ornithine decarboxylase by the tumor promoter TPA is controlled at the post-transcriptional level in murine Swiss 3T3 fibroblasts, Biochem. Biophys. Res. Commun. 147: 219 (1987).PubMedCrossRefGoogle Scholar
  29. 29.
    L. Persson, I. Holm and O. Heby, Translational regulation of ornithine decarboxylase by polyamines, FEBS Lett. 295: 175 (1986).CrossRefGoogle Scholar
  30. 30.
    H. Inoue, Y. Kato, M. Takigawa, K. Adachi and Y. Takeda, Effects of DL-α-hydrazino-δ-andnovaleric acid, an inhibitor of ornithine decarboxylase, on polyamine metabolism in isoproterenol-stimulated mouse parotid glands, J. Biochem. 77: 879 (1975).PubMedGoogle Scholar
  31. 31.
    P. P. McCann, C. Tardif, M.-C. Duchesne and P.S. Mamont, Effect of α-methylornithine on ornithine decarboxylase activity of rat hepatoma cells in culture, Biochem. Biophys. Res. Commun. 76: 893 (1977).PubMedCrossRefGoogle Scholar
  32. 32.
    R. T. Schimke, Advances in Enzymology 37: Control of enzyme levels in mammalian tissues, 135 (1973).Google Scholar
  33. 33.
    I. Holm, L. Persson, L. Stjernborg, L. Thorsson and O. Heby, unpublished observations.Google Scholar
  34. 34.
    C. Kahana and D. Nathans, Translational regulation of mammalian ornithine decarboxylase by polyamines, J. Biol. Chem. 260: 15390 (1985).PubMedGoogle Scholar
  35. 35.
    E. Hölttä and P. Pohjanpelto, Control of ornithine decarboxylase in Chinese hamster ovary cells by polyamines. Translational inhibition of synthesis and acceleration of degradation of the enzyme by putrescine, spermidine and spermine, J. Biol. Chem. 261: 9502 (1986).PubMedGoogle Scholar
  36. 36.
    L. Persson, I. Holm and O. Heby, Regulation of ornithine decarboxylase mRNA translation by polyamines. Studies using a cell-free system and a cell line with an amplified ornithine decarboxylase gene, J. Biol. Chem. 263: 3528 (1988).PubMedGoogle Scholar
  37. 37.
    L. McConlogue and P. Coffino, A mouse lymphoma cell mutant whose major protein product is ornithine decarboxylase, J. Biol. Chem. 258: 12083 (1983).PubMedGoogle Scholar
  38. 38.
    T. Kameji and A. E. Pegg, Inhibition of translation of mRNAs for ornithine decarboxylase and S-adenosylmethionine decarboxylase by polyamines, J. Biol. Chem. 262: 2427 (1987).PubMedGoogle Scholar
  39. 39.
    C. Kahana and D. Nathans, Nucleotide sequence of murine ornithine decarboxylase, Proc. Natl. Acad. Sci. USA 82: 1673 (1985).PubMedCrossRefGoogle Scholar
  40. 40.
    M. Gupta and P. Coffino, Mouse ornithine decarboxylase. Complete amino acid sequence deduced from cDNA, J. Biol. Chem. 260: 2941 (1985).PubMedGoogle Scholar
  41. 41.
    J. H. Choi and I.E. Scheffler, A mutant of Chinese hamster ovary cells resistant to α-methyl-and α-difluoromethylornithine, Somatic Cell. Genet. 7: 219 (1981).PubMedCrossRefGoogle Scholar
  42. 42.
    P. Leinonen, L. Alhonen.Hongisto, R. Laine, O. A. Jänne and J. Janne, Human myeloma cells acquire resistance to dif luoromethylornithine by amplification of ornithine decarboxylase, Biochem. J. 242: 199 (1987).PubMedGoogle Scholar
  43. 43.
    E. Karvonen, L. C. Andersson and H. Pösö, A human neuroblastoma cell line with a stable ornithine decarboxylase in vivo and in vitro Biochem. Biophys. Res. Commun. 126: 96 (1985).PubMedCrossRefGoogle Scholar
  44. 44.
    L. McConlogue, S. L. Dana and P. Cbffino, Multiple mechanisms are responsible for altered expression of ornithine decarboxylase in overproducing variant cells, Mol. Cell. Biol. 6: 2865 (1986).PubMedGoogle Scholar
  45. 45.
    L. Alhonen-Hongisto, P. Leinonen, R. Laine and J. Jänne, Human myeloma cells acquire resistance to dif luoromethylornithine without overproducing ornithine decarboxylase, Biochem. Biophys. Res. Commun. 144: 132 (1987).PubMedCrossRefGoogle Scholar
  46. 46.
    P. R. Srinivasan, P. N. Tonin, E. J. Wensing and W. H. Lewis, The gene for ornithine decarboxylase is co-amplified in hydroxyurea-resistant hamster cells, J. Biol. Chem. 262: 12871 (1987).PubMedGoogle Scholar
  47. 47.
    N. J. Hickok, P. J. Seppänen, K. K. Kbntula, P. A. Jänne, C. W. Bardin and O. A. Janne, Two ornithine decarboxylase mRNA species in mouse kidney arise from size heterogeneity at their 3′ termini, Proc. Natl. Acad. Sci. USA 83: 594 (1986).PubMedCrossRefGoogle Scholar
  48. 48.
    L. Alhonen-Hongisto, A. Kallio, R. Sinervirta, P. Seppänen, K. K. Kontula, O. A. Janne and J. Jänne, Difluoromethylornithineinduced amplification of ornithine decarboxylase genes in Ehrlich ascites carcinoma cells, Biochem. Biophys. Res. Commun. 126: 734 (1985).PubMedCrossRefGoogle Scholar
  49. 49.
    L. Alhonen-Hongisto, R. Sinervirta, O. A. Janne and J. Jänne, Gene expression of ornithine decarboxylase in L1210 leukaemia cells exposed to DL-2-difluoromethylornithine, Biochem. J. 232: 605 (1985).PubMedGoogle Scholar
  50. 50.
    T. L. Yang-Feng, D. E. Barton, L. Thelander, W. H. Lewis, P. R. Srinivasan and U. Francke, Ribonucleotide reductase M2 subunit sequences mapped to four different chromosomal sites in humans and mice: functional locus identified by its amplification in hydroxyurea-resistant cell line, Genomics 1: 72 (1987).CrossRefGoogle Scholar
  51. 51.
    R. Winqvist, T. P. Mäkelä, P. Seppänen, O. A. Jänne, L. Alhonen-Hongisto, J. Jänne, K.-H. Grzeschik and K. Alitalo, Human ornithine decarboxylase sequences map to chromosome regions 2pter-p23 and 7cen-qter but are not coamplified with the NMYC oncogene, Cytogenet. Cell. Genet. 42: 133 (1986).PubMedCrossRefGoogle Scholar
  52. 52.
    L. Alhonen-Hongisto, P. Leinonen, R. Sinervirta, R. Laine, R. Winqvist, K. Alitalo, O. A. Jänne and J. Janne, MDUse and human ornithine decarboxylase genes. Methylation polymorphism and amplification, Biochem. J. 242: 205 (1987).PubMedGoogle Scholar
  53. 53.
    J. R. Glass and E. W. Gerner, Spermidine mediates degradation of ornithine decarboxylase by a non-lysosomal, ubiquitin-independent mechanism, J. Cell. Physiol. 130: 133 (1987).PubMedCrossRefGoogle Scholar
  54. 54.
    A. Bachmair, D. Finley and A. Varshavsky, In vivo half-life of a protein is a function of its amino-terminal residue, Science 234: 179 (1986).PubMedCrossRefGoogle Scholar
  55. 55.
    Y. Murakami, K. Fujita, T. Kameji and S. Hayashi, Accumulation of ornithine decarboxylase-antizyme complex in HMOA cells, Biochem. J. 225: 689 (1985).PubMedGoogle Scholar
  56. 56.
    S. Hayashi, T. Kameji, K. Fujita, Y. Murakami, R. Kanamoto, K. Utsuncmiya, S. Matsufuji, M. Takiguchi, M. Mori and M. Tatibana, Molecular mechanism for the regulation of hepatic ornithine decarboxylase, Adv. Enzyme. Regul. 23: 311 (1985).PubMedCrossRefGoogle Scholar
  57. 57.
    S. Rogers, R. Wells and M. Rechsteiner, Amino acid sequences common to rapidly degraded proteins: the PEST hypothesis, Science 234: 364 (1986).PubMedCrossRefGoogle Scholar
  58. 58.
    M. A. Phillips, P. Coffino and C. C. Wang, Cloning and sequencing of the ornithine decarboxylase gene from Trypanosoma brucei. Implications for enzyme turnover and selective difluoromethylornithine inhibition, J. Biol. Chem. 262: 8721 (1987).PubMedGoogle Scholar
  59. 59.
    P. S. Mamont, M. C. Duchesne, J. Grove and C. Tardif, Initial characterization of a HTC cell variant partially resistant to the anti-proliferative effect of ornithine decarboxylase inhibitors, Exp. Cell. Res. 115: 387 (1978).PubMedCrossRefGoogle Scholar
  60. 60.
    P. P. McCann, C. Tardif, J.-M. Hornsperger and P. Böhlen, Two distinct mechansims for ornithine decarboxylase regulation by polyamines in rat hepatoma cells, J. Cell. Physiol. 99: 183 (1979).PubMedCrossRefGoogle Scholar
  61. 61.
    A. E. Pegg and H. G. Williams-Ashman, Stimulation of decarboxylation of S-adenosylmethionine by putrescine in mammalian tissues, Biochem. Biophys. Res. Commun. 30: 76 (1968).PubMedCrossRefGoogle Scholar
  62. 62.
    A. E. Pegg, Evidence for the presence of pyruvate in rat liver S-adenosylmethionine decarboxylase, FEBS Lett. 84: 33 (1977).PubMedCrossRefGoogle Scholar
  63. 63.
    R. W. Wickner, C. W. Tabor and H. Tabor, Purification of adenosylmethionine decarboxylase from Escherichia coli: evidence for covalently bound pyruvate, J. Biol. Chem. 245: 2132 (1970).PubMedGoogle Scholar
  64. 64.
    M. S. Cohn, C. W. Tabor and H. Tabor, Identification of a pyrovoyl residue in S-adenosylmethionine decarboxylase from Saccharomyces cerevisiae, J. Biol. Chem. 252: 8212 (1977).PubMedGoogle Scholar
  65. 65.
    P. A. Recsei, Q. K. Huynh and E. E. Snell, Conversion of prohistidine decarboxylase to histidine decarboxylase: peptide chain cleavage by nonhydrolytic serinolysis, Proc. Natl. Acad. Sci. USA 80: 973 (1983).PubMedCrossRefGoogle Scholar
  66. 66.
    C. W. Tabor and H. Tabor, The speEspeD operon of Escherichia coli. Formation and processing of a proenzyme form of S-adenosylmethionine decarboxylase, J. Biol. Chem. 262: 16037 (1987).PubMedGoogle Scholar
  67. 67.
    A. Shirahata and A. E. Pegg, Increased content of mRNA for a precursor of S-adenosylmethionine decarboxylase in rat prostate after treatment with 2-difluoromethylornithine, J. Biol. Chem. 261: 13833 (1986).PubMedGoogle Scholar
  68. 68.
    T. Kameji and A. E. Pegg, Effect of putrescine on the synthesis of S-adenosylmethionine decarboxylase, Biochem. J. 243: 285 (1987).PubMedGoogle Scholar
  69. 69.
    A. E. Pegg, L. Wiest and A. Pajunen, Detection of proenzyme form of S-adenosylmethionine decarboxylase in extracts from rat prostate, Biochem. Biophys. Res. Commun. 150: 788 (1988).PubMedCrossRefGoogle Scholar
  70. 70.
    L. Persson, L. Stjemborg, I. Holm and O. Heby, unpublished observations.Google Scholar
  71. 71.
    L. Alhonen-Hongisto, Regulation of S-adenosylmethionine decarboxylase by polyamines in Ehrlich ascites-carcinoma cells grown in culture, Biochem. J. 190: 747 (1980).PubMedGoogle Scholar
  72. 72.
    P. S. Mamont, A.-M. Joder-Olenbusch, M. Nussli and J. Grove, Indirect evidence for a strict negative control of S-adenosyl-L-methionine decarboxylase by spermidine in rat hepatoma cells, Biochem. J. 196: 411 (1981).PubMedGoogle Scholar
  73. 73.
    A. E. Pegg, R. Wechter and A. Pajunen, Increase in S-adenosylmethionine decarboxylase in SV-3T3 cells treated with S-methyl-5′methyl-thioadenosine, Biochem. J. 244: 49 (1987).PubMedGoogle Scholar
  74. 74.
    E. Stimac and D. R. Morris, Messenger RNAs coding for enzymes of polyamine biosynthesis are induced during the G0-G1 transition but not during traverse of the normal G1 phase, J. Cell. Physiol. 133: 590 (1987).PubMedCrossRefGoogle Scholar
  75. 75.
    J. J. Schultz and A. Shain, Effect of aging on AXC/SSh rat ventral and dorsolateral prostate S-adenosyl-L-methionine decarboxylase and L-ornithine decarboxylase messenger ribonucleic acid content, Endocrinology 122: 120 (1988).PubMedCrossRefGoogle Scholar
  76. 76.
    A. E. Pegg, A. Corti and H. G. Williams-Ashman, Paradoxical enhancement of S-adenosylmethionine decarboxylase in rat tissues following administration of the specific inhibitor methyl glyoxal bis(guanylhydrazone), Biochem. Biophys. Res. Commun. 52: 696 (1973).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Lo Persson
    • 1
  • Ingvar Holm
    • 2
  • Louise Stjernborg
    • 2
  • Olle Heby
    • 2
  1. 1.Departments of PhysiologyUniversity of LundLundSweden
  2. 2.Departments of ZoophysiologyUniversity of LundLundSweden

Personalised recommendations