Advertisement

Studies on Human Serum 5′ -Deoxy-5′ -Methylthioadenosine Phosphorylase: Molecular Properties and Clinical Perspectives

  • Gian Luigi Russo
  • Fulvio Della Ragione
  • Riccardo Utili
  • Augusto Andreana
  • Giuseppe Ruggiero
  • Vincenzo Zappia
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 250)

Abstract

5′ -Deoxy-5′ -methylthioadenosine phosphorylase (MTAase) is the only enzyme responsible in eukaryotes for the removal of MTA, a natural sulfur nucleoside produced from S-adenosylmethionine (AdoMet) through several routes1, 2. The enzyme catalyzes the phosphorolytic breakdown of the N-C glycosidic bond of the thioether leading to adenine and 5-methylthioribose-1-phosphate (MTR-1-P)3, 4. The carbon skeleton of phosphorylated sugar (except C-1) is then recycled to methionine5 and the purine base is converted to adenosine 5 ′-monophosphate by adenine phosphoribosyltransferase1: MTAase, therefore, plays a key role in the control of both purine and amino acid pools.

Keywords

Acute Hepatitis Assay Mixture Amino Acid Pool Phosphorylase Activity Adenine Phosphoribosyltransferase1 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. Della Ragione, M. Cartení-Farina and V. Zappia, 5′-Deoxy-5′-me-thylthioadenosine: novel metabolic and physiological aspects, in: “The Physiology of Polyamines, ” U. Bachrach and Y.M. Heimer eds, CRC Press, Boca Raton, in press.Google Scholar
  2. 2.
    H.G. Williams-Ashman, G. Seidenfeld and P. Galletti, Trends in the biochemical pharmacology of 5′-deoxy-5′-methylthioadenosine, Biochem, Pharmacol, 31: 277 (1982).CrossRefGoogle Scholar
  3. 3.
    A.E. Pegg and H.G. Williams-Ashman, Phosphate-stimulated breakdown of 5′-methylthioadenosine by rat ventral prostate, Biochem. J. 115: 241 (1969).PubMedGoogle Scholar
  4. 4.
    V. Zappia, A. Oliva, G. Cacciapuoti, P. Galletti, G. Mignucci and M. Cartení-Farina, Substrate specificity of 5′-methylthioadenosine phosphorylase from human prostate, Biochem. J. 175: 1043 (1978).PubMedGoogle Scholar
  5. 5.
    P.S. Backlund and R.A. Smith, Methionine synthesis from 5′methylthioadenosine in rat liver, J. Biol. Chem. 256: 1533 (1981).PubMedGoogle Scholar
  6. 6.
    D.L. Garbers, Demonstration of 5′-methylthioadenosine phosphorylase activity in various rat tissues: some properties of the enzyme from rat lung, Biochem. Biophys. Acta 523: 82 (1978).PubMedGoogle Scholar
  7. 7.
    G. Cacciapuoti, A. Oliva and V. Zappia, Studies on phosphate-activated 5′-methylthioadenosine nucleosidase from human placenta, Int. J. Biochem. 9: 35 (1978).PubMedCrossRefGoogle Scholar
  8. 8.
    T.M. Savarese, G.W. Crabtree and R.E. Parks Jr, 5′-Methyl-thioadenosine phosphorylase-I: substrate activity of 5′-deoxyadenosine with the enzyme from Sarcoma 180 cells, Biochem. Pharmacol. 30: 189 (1981).PubMedCrossRefGoogle Scholar
  9. 9.
    F. Della Ragione, M. Cartení-Farina, V. Gragnaniello, M.I. Schettino and V. Zappia, Purification and characterization of 5′-deoxy-5′-methylthioadenosine phosphorylase from human placenta, J. Biol. Chem. 261: 12324 (1986).PubMedGoogle Scholar
  10. 10.
    J. Seidenfeld, J. Wilson and H.G. Williams-Ashman, Androgenic regulation of 5′-deoxy-5′-methylthioadenosine concentration and methylthioadenosine phosphorylase activity in relation to polyamine metabolism of rat prostate, Biochem. Biophys. Res. Commun. 95: 1861 (1980).PubMedCrossRefGoogle Scholar
  11. 11.
    N. Kamatani, W.A. Nelson-Rees and D.A. Carson, Selective killing of human malignant cells deficient in methylthioadenosine phosphorylase, a purine metabolism enzyme, Proc. Natl. Acad. Sci. USA 78: 1219 (1981).PubMedCrossRefGoogle Scholar
  12. 12.
    M.K. Riscoe and A.J. Ferro, 5-Methylthioribose: its effects and function in mammalian cells, J. Biol. Chem. 259: 5465 (1984).PubMedGoogle Scholar
  13. 13.
    V. Zappia, C. R. Zydek-Cwick and F. Schlenk, The specificity of S-adenosylmethionine derivatives in methyl transfer reactions, J. Biol. Chem. 244: 4499 (1969).PubMedGoogle Scholar
  14. 14.
    F. Della Ragione, M. Cartenì-Farina, M. Porcelli, G. Cacciapuoti and V. Zappia, High performance Chromatographic analysis of 5′-methylthioadenosine in rat tissues, J. Chromatogr. 226: 243 (1981).PubMedCrossRefGoogle Scholar
  15. 15.
    M.M. Bradford, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein binding, Anal. Biochem. 72: 248 (1976).PubMedCrossRefGoogle Scholar
  16. 16.
    J.H. Fitchen, M.K. Riscoe, B.W. Dana, H.J. Lawrence and A.J. Ferro, Methylthioadenosine phosphorylase deficiency in human leukemias, Cancer Research 46: 5409 (1986).PubMedGoogle Scholar
  17. 17.
    F. Della Ragione, A. Oliva, M. Fioretti, G.L. Russo, R. Palximbo and V. Zappia, Physico-chemical and imnunological properties of bovine liver 5′-deoxy-5′-methylthioadenosine phosphorylase, in this book. Google Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Gian Luigi Russo
    • 1
  • Fulvio Della Ragione
    • 1
  • Riccardo Utili
    • 1
    • 2
  • Augusto Andreana
    • 1
    • 2
  • Giuseppe Ruggiero
    • 1
    • 2
  • Vincenzo Zappia
    • 1
  1. 1.Department of Biochemistry of MacromoleculesUniversity of NaplesNaplesItaly
  2. 2.Department of Medical Therapy, First Medical SchoolUniversity of NaplesNaplesItaly

Personalised recommendations