MTA Phosphorylase in Protozoa: A Potential Target for Chemotherapeutic Attack

  • Richard L. Miller
  • David P. Toorchen
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 250)


An estimated 1 billion of the world’s population are infected by parasitic protozoa. It has only been in the last decade, with the advent of in vitro axenic culture of a few of these organisms, that the hope of the rational development of parasite specific drugs has been expedited.


Visceral Leishmaniasis Trypanosoma Cruzi Purine Nucleoside Trypanosoma Brucei Purine Nucleoside Phosphorylase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. L. Berens, J. J. Marr, S. W. LaFon, and D. J. Nelson, Purine Metabolism in Trypanosoma cruzi. Mol. Biochem. Parasitol. 3: 187–196 (1981).PubMedCrossRefGoogle Scholar
  2. 2.
    W. R. Fish, J. J. Marr, and R. L. Berens, Purine Metabolism in Trypanosoma brucei gambiense. Biochim. Biophys. Acta 714: 422–428 (1982).PubMedCrossRefGoogle Scholar
  3. 3.
    S. W. LaFon, D. J. Nelson, R. L. Berens, and J. J. Marr, Purine and Pyrimidine Salvage Pathways in Leishmania donovani, Biochem. Pharmacol. 31: 231–238 (1982).PubMedCrossRefGoogle Scholar
  4. 4.
    J. J. Marr, R. L. Berens, and D. J. Nelson, Antitrypanosomal Effect of Allopurinol: Conversion in vivo to Aminopyrazolopyrimidine Nucleotides by Trypanosoma cruzi, Science. 201: 1018–1020 (1978).PubMedCrossRefGoogle Scholar
  5. 5.
    W. R. Fish, J. J. Marr, R. L. Berens, D. L. Looker, D. J. Nelson, S. W. LaFon, and A. E. Balber, Inosine Analogs as Chemotherapeutic Agents for African Trypanosomes: Metabolism in Trypanosomes and Efficacy in Tissue Culture, Antimicrob. Agents and Chemother. 27: 33–36 (1985).Google Scholar
  6. 6.
    J. J. Marr and R. L. Berens, Antileishmanial Effect of Allopurinol. II. Relationship of Adenine Metabolism in Leishmania Species to the Action of Allopurinol, J. Infect. Dis. 136: 724–732 (1977).PubMedCrossRefGoogle Scholar
  7. 7.
    J. J. Marr, R. L. Berens, N. K. Cohn, D. J. Nelson, and R. S. Klein, Biological Action of Inosine Analogs in Leishmania and Trypanosoma Sp., Antimicrob. Agents and Chemother. 25: 292–295 (1984).Google Scholar
  8. 8.
    J. J. Marr, R. L. Berens, D. J. Nelson, T. A. Krenitsky, T. Spector, S. W. LaFon, and G. B. Elion, Antileishmanial Action of 4-Thiopyrazolo(3, 4-d)pyrimidine and its Ribonucleoside: Biological Effects and Metabolism, Biochem. Pharmacol. 31: 143–148 (1982).PubMedCrossRefGoogle Scholar
  9. 9.
    T. M. Savarese, G. W. Crabtree, and R. E. Parks Jr., Reaction of 5′-Deoxyadenosine and Related Analogs with the 5′-Methylthioadenosine Cleaving Enzyme of Sarcoma 180 Cells, A Possible Chemotherapeutic Target Enzyme, Biochem. Pharmacol. 28: 2227–2230 (1979).PubMedCrossRefGoogle Scholar
  10. 10.
    T. M. Savarese, G. W. Crabtree, and R. E. Parks Jr., 5′-Methylthioadenosine Phosphorylase-I: Substrate Activity with 5′-Deoxyadenosine with the Enzyme from Sarcoma 180 Cells, Biochem. Pharmacol. 30: 189–199 (1981).PubMedCrossRefGoogle Scholar
  11. 11.
    T. M. Savarese, D. L. Dexter, and R. E. Parks Jr., 5′-Deoxy-5′-methylthioadenosine Phosphorylase-II: Role of the Enzyme in the Metabolism and Antineoplastic Action of Adenine-Substituted Analogs of 5′-Deoxy-5′-methylthioadenosine, Biochem. Pharmacol. 32: 1907–1916 (1983).PubMedCrossRefGoogle Scholar
  12. 12.
    T. M. Savarese, S-H. Chu, M-Y. Chu, and R. E. Parks Jr., 5′-Deoxy-5′-methylthioadenosine Phosphorylase-III: Role of the Enzyme in the Metabolism and Action of 5′-Halogenated Adenosine Analogs, Biochem. Pharmacol. 34: 361–367 (1985).PubMedCrossRefGoogle Scholar
  13. 13.
    T. M. Savarese, A. J. Cannistra, and R. E. Parks Jr., 5′-Deoxy-5′-methylthioadenosine Phosphorylase-IV: Biological Activity of 2-Fluoroadenine-Substituted 5 ′-Deoxy-5′-methylthioadenosine Analogs, Biochem. Pharmacol. 36: 1881–1893 (1987).PubMedCrossRefGoogle Scholar
  14. 14.
    T. M. Savarese, L. Y. Ghoda, D. L. Dexter, and R. E. Parks Jr., Conversion of 5′-Deoxy-5 ′-methylthioadenosine and 5′-Deoxy-5′-methylthioinosine to Methionine in Cultured Human Leukemic Cells, Cancer Res. 43: 4699–4702 (1983).PubMedGoogle Scholar
  15. 15.
    D. L. Garbers, Demonstration of 5′-Methylthioadenosine Phosphorylase Activity in Various Rat Tissues. Some Properties of the Enzyme from Rat Lung, Biochim. Biophvs Acta 523: 82–93 (1978).Google Scholar
  16. 16.
    F. D. Ragione, M. Cartenì-Farina, V. Gragnaniello, M. I. Schettino, and V. Zappia, Purification and Characterization of 5′-Deoxy-5′-methylthioadenosine Phosphorylase from Human Placenta, J. Biol. Chem. 261: 12324–12329 (1986).PubMedGoogle Scholar
  17. 17.
    M. W. White, A. A. Vandenbark, C. L. Barney, and A. J. Ferro, Structural Analogs of 5′-Methylthioadenosine as Substrates and as Inhibitors of 5′-Methylthioadenosine Phosphorylase and Inhibitors of Human Lymphocyte Transformation, Biochem. Pharmacol. 31: 503–507 (1982).PubMedCrossRefGoogle Scholar
  18. 18.
    V. Zappia, A. Oliva, G. Cacciapuoti, P. Galletti, G. Mignucci, and M. Cartenì-Farina, Substrate Specificity of 5′-Methylthioadenosine Phosphorylase from Human Prostate, Biochem. J. 175: 1043–1050 (1978).PubMedGoogle Scholar
  19. 19.
    D. P. Toorchen, and R. L. Miller, (unpublished data)Google Scholar
  20. 20.
    T. M. Savarese, L. Y. Ghoda, and R. E. Parks Jr., Biochemical Considerations in the Design of Analogs of 5′-Deoxy-5′-methyl-thioadenosine, in: “Development of Target-Oriented Anticancer Drugs,” Y.-C. Cheng, B. Goz, M. Minkoff, eds., Raven Press, NY (1983).Google Scholar
  21. 21.
    R. L. Miller, C. L. K. Sabourin, and T. A. Krenitsky, Trypanosoma cruzi Adenine Nucleoside Phosphorylase: Purification and Substrate Specificity, Biochem. Pharmacol. 36: 553–560 (1987).PubMedCrossRefGoogle Scholar
  22. 22.
    L. Y. Ghoda, T. M. Savarese, C. H. Northrup, R. E. Parks Jr., J. Garofalo, L. Katz, B. B. Ellenbogen, and C. J. Bacchi, Substrate Specificities of 5′-Deoxy-5′-methylthioadenosine Phosphorylase from Trypanosoma brucei brucei and Mammalian Cells, Mol. Biochem. Parasitol. 27: 109–118 (1988).PubMedCrossRefGoogle Scholar
  23. 23.
    G. W. Koszalka and T. A. Krenitsky, 5′-Methylthioadenosine (MTA) Phosphorylase from Promastigotes of Leishmania donovani. in: “Purine and Pyrimidine Metabolism in Man. V.” W. L. Nyhan, L. F. Thompson, and R. W. E. Watts, eds., Plenum Publishing Company, NY (1986).Google Scholar
  24. 24.
    J. D. Stoeckler, Purine Nucleoside Phosphorylase: A Target for Chemotherapy, in: “Developments in Cancer Chemotherapy,” R. I. Glazer, ed., CRC Press, Inc., Boca Raton, FL. (1984).Google Scholar
  25. 25.
    A. Bloch, M. J. Robins, and J. R. McCarthy Jr., The Role of the 5′-Hydroxyl Group of Adenosine in Determining Substrate Specificity for Adenosine Deaminase, J. Med. Chem. 10: 908–912 (1967).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Richard L. Miller
    • 1
  • David P. Toorchen
    • 1
  1. 1.Wellcome Research LaboratoriesResearch Triangle ParkUSA

Personalised recommendations