Exploitation of Methylthioribose Kinase in the Development of Antiprotozoal Drugs

  • John H. Fitchen
  • Michael K. Riscoe
  • Adolph J. Ferro
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 250)


Parasitic infections such as malaria and giardiasis cause some of the most prevalent diseases of man and produce extensive morbidity and mortality around the world1. For example, over 600 million people are chronically infected with Plasmodium falciparum and at least 1.5 million malaria-related deaths occur each year2, 3. Moreover, it has been estimated that death and illness due to malaria cost third world countries over $2 trillion annually4. Despite intensive research efforts, the development of new and effective antimalarial drugs has been difficult because of the close metabolic relationship between protozoa and human cells.


Plasmodium Falciparum Enterobacter Aerogenes Murine Bone Marrow Intensive Research Effort Promyelocytic Leukemia Cell Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wyler, D.J. 1983. Malaria—resurgence, resistance and research. New Eng. J. Med. 308: 875.PubMedCrossRefGoogle Scholar
  2. 2.
    Peters, W. 1985. Chemotherapy of malaria, in Chemotherapy of Parasites. E.A. Denham, ed., Cambridge Univ. Press, Cambridge, p. 705.Google Scholar
  3. 3.
    Warhurst, D.C. 1987. Antimalarial drugs: An update. Drugs 33: 50.PubMedCrossRefGoogle Scholar
  4. 4.
    Cheng, T.C. 1986. Apicomplexa, Microspora, Ascepospara, Myxozoa. in General Parasitiology. Academic Press, Orlando, p. 174.Google Scholar
  5. 5.
    Peters, W. 1970. Chemotherapy and Drug Resistance in Malaria. Academic Press, New York, p. 876.Google Scholar
  6. 6.
    World Health Organization Report. 1985. Seventh Program Report. Tropical Disease Research. Chapter 2, p.3.Google Scholar
  7. 7.
    Scientific Working Group. 1980. Parasite-related diarrrheas. Bull Wld. Hlth. Org. 58: 819.Google Scholar
  8. 8.
    Craun, G.F. 1984. Waterborne outbreaks of giardiasis, Current status, in Giardia and Giardiasis. S.L. Erlandsen and E.A. Meyer, eds., Plenum Press, New York, p. 243.Google Scholar
  9. 9.
    Wolfe, M.S. 1979. Giardia lamblia. in Principles and Practice of Infectious Diseases. G.L. Mandell, R.G. Douglas and J.E. Bennett, eds., John Wiley, New York, p. 2143.Google Scholar
  10. 10.
    Sherding, R.G. 1983. Diseases of the small bowel, in Veterinary Internal Medicine. S.J. Ettinger, ed., W.B. Saunders Co., Philadelphia, p. 131s7.Google Scholar
  11. 11.
    Wolfe, M.S. 1984. Viruses, Rickettsiae, Chlamydiae, and Mycoplasmas. in Principles and Practice of Infectious Diseases. G.L. Mandell, R.G. Douglas and J.E. Bennett, eds., Plenum Press, New York, p. 147.Google Scholar
  12. 12.
    Cohen, S.S. 1979. Comparative biochemistry and drug design for infectious disease. Science 205: 964.PubMedCrossRefGoogle Scholar
  13. 13.
    Fairlamb, A.H. 1982. Biochemistry of trypanosomiasis and rational approaches to chemotherapy. Trends Biochem. Sci. 7: 249.CrossRefGoogle Scholar
  14. 14.
    Opperdowe, F.R. 1983. Toward the development of new drugs for parasitic diseases, in Parasitology: A Global Perspective. K.S. Warren and J.S. Bower, eds., Springer-Verlag, New York, p. 191.Google Scholar
  15. 15.
    Cohen, S.S. 1982. The polyamines as a growth industry. Fed. Proc. Am. Soc. Exp. Biol. 41: 3061.Google Scholar
  16. 16.
    Schlenk, F., 1983. Methylthioadenosine. in Advances in Enzymology and Related Area of Moledular Biology. A. Meister, ed., John Wiley and Sons, New York, p. 195.Google Scholar
  17. 17.
    Williams-Ashman, H.G., Seidenfeld, J. and Galletti, P. 1982. Trends in the biochemical pharmacology of 5′-methylthioadenosine. Biochem. Pharm. 3: 277.CrossRefGoogle Scholar
  18. 18.
    Pegg, A.E. and Williams-Ashman, H.G. 1969. Phosphate-stimulated breakdown of 5-methylthioadenosine by rat ventral prostate. J. Biol Chem. 115: 241.Google Scholar
  19. 19.
    Ferro, A.J. and Marchitto, K.S. 1983. 5-Methylthioribose kinase (Enterobacter aerogenes). in Methods in Enzymology. H. Tabor and C.W. Tabor, eds., Academic Press, New York. p. 361.Google Scholar
  20. 20.
    Shapiro, S.K. and Barrett, A. 1981. 5-Methylthioribose as a precursor of the carbon chain of methionine. Biochem. Biophys. Res. Commun. 102: 302.PubMedCrossRefGoogle Scholar
  21. 21.
    Backlund, P.S. and Smith, R.A. 1981. Methionine synthesis from 5′-methylthioadenosine in rat liver. J. Biol. Chem. 256: 533.Google Scholar
  22. 22.
    Kushad, M.M., Richardson, D.G., Ferro, A.J. 1983. Intermediates in the recycling of 5-methylthioribose to methionine in fruits. Plant Physiol. 73: 257.PubMedCrossRefGoogle Scholar
  23. 23.
    Ferro, A. J., Barrett, A. and Shapiro, S. K. 1976. Kinetic properties and the effect of substrate analogues on 5′-methylthioadenos ine nucleosidase from Escherichia coli. Biochim. Biophys. Acta. 438: 487.PubMedGoogle Scholar
  24. 24.
    Ferro, A. J., Barrett, A., and Shapiro, S. K. 1978. 5-Methylthioribose kinase: A new enzyme involved in the formation of methionine from 5-methylthioribose. J. Biol. Chem. 253: 6021.PubMedGoogle Scholar
  25. 25.
    Sugimoto, Y., Toraya, T., and Fukui, S. 1976. Studies on metabolic role of 5′-methylthioadenosine in Ochromonas malhamensis and other microorganisms. Arch. Microbiol. 108: 175.PubMedCrossRefGoogle Scholar
  26. 26.
    Kushad, M. M., Richardson, D. G., and Ferro, A. J. 1982. 5-Methylthioribose kinase activity in plants. Biochem. Biophys. Res. Commun. 108: 167.PubMedCrossRefGoogle Scholar
  27. 27.
    Sanderson, A. and Walliker, D. 1981. Enzyme typing of Plasmodium falciparium from African and some other Old World countries. Trans. Roy. Soc. Trop. Med. Hyg. 75: 263.PubMedCrossRefGoogle Scholar
  28. 28.
    Riscoe, M. K. and Ferro, A. J. 1984. 5-Methylthioribose: Its effects and functions in mammalian cells. J. Biol. Chem. 259: 5465.PubMedGoogle Scholar
  29. 29.
    Lerner, L. M. 1977. Enantiomeric forms of 9-(5-deoxyerythro-pent-4-enofuranosyl)adenine and a new preparation of 5-deoxy-D-lyxose. Carbohydrate Res. 53: 177.CrossRefGoogle Scholar
  30. 30.
    Richards, W. H. G., and Maples, B. K. 1979. Studies on Plasmodium falciparum in continuous cultivation. I. The effect of chloroquine and pryimethamine on parasite growth and viability. Ann. Trop. Med. Parasitol. 73: 99.PubMedGoogle Scholar
  31. 31.
    Desjardins, R. E., Canfield, C. J., Haynes, J. D., and Chulay, J. D. 1979. Quantitative assessment of antimalarial activity in vitro by a semiautomated raicrodilution technique. Antimicrob. Agents and Chemother. 16: 710.Google Scholar
  32. 32.
    Burgess, A. W., Wilson, E. C., and Metcalf, D. 1986. Stimulation by human placental conditioned medium of hemopoietic colony formation by human marrow cells. Blood 49: 573.Google Scholar
  33. 33.
    Collins, S.C. 1987. The HL-60 promyelocytic leukemia cell line: Proliferation, differentiation, and cellular oncogene expression. Blood 70: 1233.PubMedGoogle Scholar
  34. 34.
    Alix, J-H. 1982. Molecular aspects of the in vivo and in vitro effects of ethionine, an analog of methionine. Microb. Rev. 46: 281.Google Scholar
  35. 35.
    Chang, J-Y., Knecht, R., and Braun, D.G. 1983. Amino acid analysis in the picomole range by precolumn derivatization. in Methods in Enzymology, C.H.W. Hirs and S.N. Timasheff, eds., Academic Press, New York, p. 41.Google Scholar
  36. 36.
    WHO Scientific Group. 1984. Drug resistance in human pathogenic Plasmodia. WHO Tech. Rep. 711: 10.Google Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • John H. Fitchen
    • 1
    • 2
  • Michael K. Riscoe
    • 1
    • 2
  • Adolph J. Ferro
    • 1
    • 2
  1. 1.Medical Research ServicePortland V.A. Medical CenterPortlandUSA
  2. 2.Epitope, Inc.BeavertonUSA

Personalised recommendations