Physico-Chemical and Immunological Properties of Bovine Liver 5′-Deoxy-5′-Methylthioadenosine Phosphorylase

  • Fulvio Della Ragione
  • Adriana Oliva
  • Massimo Fioretti
  • Gian Luigi Russo
  • Rosanna Palumbo
  • Vincenzo Zappia
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 250)


The search for specific enzymatic reactions which can clearly differentiate normal mammalian cells from both malignant cells and infective microorganisms represents a major strategy for the development of selective therapeutical approaches. In particular, the intensive research carried out in the past on purine and pyrimidine metabolism has yielded a very rich harvest of drugs effective in the treatment of malignancy as well as of parasitic diseases.


Human Placenta Bovine Liver Purine Nucleoside Phosphorylase Phosphorylase Activity Frictional Ratio 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. Kamatani and D.A. Carson, Dependence of adenine production upon polyamine synthesis in cultured human lymphoblasts, Biochim. Biophys. Acta 675: 344 (1983)CrossRefGoogle Scholar
  2. 2.
    J.A. Duerre, A hydrolytic nucleosidase acting on S-adenosylhomocysteine and on 5′-methylthioadenosine, J. Biol. Chem. 237: 3737 (1962)Google Scholar
  3. 3.
    F. Della Ragione, M. Porcelli, M. Cartenì-Farina, V. Zappia, A.E. Pegg, Escherichia coli S-adenosylhomocysteine/5′-methylthioadenosine nucleosidase: purification, substrate specificity and mechanism of action, Biochem. J. 232: 335 (1985)PubMedGoogle Scholar
  4. 4.
    Y. Sugimoto, T. Toraya and S. Fukui, Studies on metabolic role of 5′-methylthioadenosine in Ochromonas malhamensis and other microorganisms, Arch. Microbiol. 108: 175 (1976)PubMedCrossRefGoogle Scholar
  5. 5.
    C. Baxter and C.J. Coscia, In vitro synthesis of spermidine in the higher plant, Vinca rosea, Biochem. Biophys. Res. Commun. 59: 147 (1973)CrossRefGoogle Scholar
  6. 6.
    A.B. Guranowski, P.K. Chiang and G.L. Cantoni, 5′-Methylthioadenosine nucleosidase: purification and characterization of the enzyme from Lupinus luteus seeds, Eur. J. Biochem. 114: 243 (1981)CrossRefGoogle Scholar
  7. 7.
    A.E. Pegg and H.G. Williams-Ashman, Phosphate-stimulated breakdown of 5′-methylthioadenosine by rat ventral prostate, Biochem. J. 115: 241 (1969)PubMedGoogle Scholar
  8. 8.
    D.L. Garbers, Demonstration of 5′-methylthioadenosine phosphorylase activity in various rat tissues: some properties of the enzyme from rat lung, Biochim. Biophys. Acta, 523: 82 (1978)PubMedGoogle Scholar
  9. 9.
    V. Zappia, A. Oliva, G. Cacciapuoti, P. Galletti, G. Mignucci and M. Cartenì-Farina, Substrate specificity of 5′-methylthioadenosine phosphorylase from human prostate, Biochem. J. 175: 1043 (1978)PubMedGoogle Scholar
  10. 10.
    G. Cacciapuoti, A. Oliva and V. Zappia, Studies on phosphate-activated 5′-methylthioadenosine nucleosidase from human placenta, Int. J. Biochem. 9: 35 (1978)PubMedCrossRefGoogle Scholar
  11. 11.
    T.M. Savarese, G.W. Crabtree and R.E. Parks Jr, 5′-Methylthioadenosine phosphorylase — I: substrate activity of 5′-deoxyadenosine with the enzyme from sarcoma 180 cells, Biochem. Pharmacol. 30: 189 (1981)PubMedCrossRefGoogle Scholar
  12. 12.
    A.J. Ferro, N.C. Wobei and J.A. Nicolette, 5-Methylthioribose-1-phosphate: a. product of partially purified rat liver 5′-methylthioadenosine phosphorylase, Biochim. Biophys. Acta 570: 65 (1979)PubMedGoogle Scholar
  13. 13.
    L. Shugart, M. Tancer and J. Moore, Methylthioadenosine nucleoside phosphorylase activity in Drosophila melanogaster, Int. J. Biochem. 10: 901 (1979)PubMedCrossRefGoogle Scholar
  14. 14.
    S. Shimizu, T. Abe, S. Shiozaki and H. Yamada, Catabolism of methylthioadenosine and S-adenosylhomocysteine in microorganisms, in International Conference on Polyamines in Life Sciences, Lake Yamanaka, Japan, July 14–18 (1986)Google Scholar
  15. 15.
    R.L. Miller, C.L.K. Sabourin and T.A. Krenitsky, Trypanosoma cruzi adenine nucleoside phosphorylase purification and substrate specificity, Biochem. Pharmacol. 36: 553 (1987)PubMedCrossRefGoogle Scholar
  16. 16.
    N. Kamatani, W.A. Nelson-Rees and D.A. Carson, Selective killing of human malignant cells deficient in methylthioadenosine phosphorylase, a purine metabolic enzyme, Proc. Natl. Acad. Sci. USA 78: 1219 (1981)PubMedCrossRefGoogle Scholar
  17. 17.
    T.M. Savarese, S-H. Chu, M-Y Chu and R.E. Parks Jr, 5′-Deoxy-5′-methylthioadenosine phosphorylase-III: role of the enzyme in the metabolism and action of 5′-halogenated adenosine analogs, Biochem. Pharmacol. 34: 361 (1985)PubMedCrossRefGoogle Scholar
  18. 18.
    P.S. Backlund and R.A. Smith, Methionine synthesis from 5′-methylthioadenosine in rat liver, J. Biol. Chem. 256: 1533 (1981)PubMedGoogle Scholar
  19. 19.
    F. Della Ragione, M. Cartenì-Farina, V. Gragnaniello, M.I. Schettino and V. Zappia, Purification and characterization of 5′-deoxy-5′-methylthioadenosine phosphorylase from human placenta, J. Biol. Chem. 261: 12324 (1986)PubMedGoogle Scholar
  20. 20.
    J.D. Stoeckler, R.P. Agarwal, K.C. Agarwal, K. Schmid and R.E. Parks Jr, Purine nucleoside phosphorylase from human erythrocytes: physicochemical properties of the crystalline enzyme, Biochemistry 17: 278 (1978)PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Fulvio Della Ragione
    • 1
  • Adriana Oliva
    • 1
  • Massimo Fioretti
    • 1
  • Gian Luigi Russo
    • 1
  • Rosanna Palumbo
    • 1
  • Vincenzo Zappia
    • 1
  1. 1.Department of Biochemistry of Macromolecules, First Medical SchoolUniversity of NaplesNaplesItaly

Personalised recommendations